A014626 Number of intersection points of diagonals of an n-gon in general position, plus number of vertices.
0, 1, 2, 3, 5, 10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, 1380, 1836, 2397, 3078, 3895, 4865, 6006, 7337, 8878, 10650, 12675, 14976, 17577, 20503, 23780, 27435, 31496, 35992, 40953, 46410, 52395, 58941, 66082, 73853, 82290, 91430, 101311
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^4-6*n^3+11*n^2-6*n)/24 +n: n in [0..50]]; // Vincenzo Librandi, Aug 21 2011
-
Mathematica
Table[(n^4 -6*n^3 +11*n^2 +18*n)/24, {n, 0, 50}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
vector(50, n, n--; (n^4 -6*n^3 +11*n^2 +18*n)/24) \\ G. C. Greubel, Nov 08 2018
Formula
a(n) = (n^4 - 6*n^3 + 11*n^2 + 18*n)/24.
From Paul Barry, Sep 23 2004: (Start)
Binomial transform of (0, 1, 0, 0, 1, 0, 0, 0, ...), or g.f. x+x^4.
G.f.: x*(1-3*x+3*x^2)/(1-x)^5;
a(n) = C(n,1) + C(n,4). (End)
E.g.f.: x*(24 + x^3)*exp(x)/24. - G. C. Greubel, Nov 08 2018
Extensions
Corrected and extended by Erich Friedman
Comments