cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159355 Number of n X n arrays of squares of integers summing to 4.

Original entry on oeis.org

5, 135, 1836, 12675, 58941, 211925, 635440, 1663821, 3921325, 8495531, 17179020, 32795295, 59626581, 103962825, 174792896, 284660665, 450710325, 695946991, 1050740300, 1554600411, 2258257485, 3226077405, 4538848176, 6296973125, 8624108701, 11671286355
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

Each array either has four 1's or one 4, and all other elements 0. - Robert Israel, Jun 19 2018

Crossrefs

Programs

  • Maple
    seq(binomial(n^2,4)+n^2, n=2..100);
  • PARI
    Vec(x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 19 2018

Formula

Empirical: n^2*(n^2+1)*(n^4-7*n^2+18)/24. - R. J. Mathar, Aug 11 2009
From Robert Israel, Jun 19 2018: (Start)
Empirical formula confirmed.
a(n) = binomial(n^2,4)+n^2 = A014626(n^2).
(End)
From Colin Barker, Jun 19 2018: (Start)
G.f.: x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)

A159255 Irregular triangle read by rows: row n gives expansion of (1-x+x^2)*(1+x)^n.

Original entry on oeis.org

1, -1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 2, 3, 3, 1, 1, 4, 6, 5, 5, 6, 4, 1, 1, 5, 10, 11, 10, 11, 10, 5, 1, 1, 6, 15, 21, 21, 21, 21, 15, 6, 1, 1, 7, 21, 36, 42, 42, 42, 36, 21, 7, 1, 1, 8, 28, 57, 78, 84, 84, 78, 57, 28, 8, 1, 1, 9, 36, 85, 135, 162, 168, 162, 135, 85, 36, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2009

Keywords

Examples

			Row n=0 : 1, -1, 1 ;
Row n=1 : 1, 0, 0, 1 ;
Row n=2 : 1, 1, 0, 1, 1 ;
Row n=3 : 1, 2, 1, 1, 2, 1 ;
Row n=4 : 1, 3, 3, 2, 3, 3, 1 ;
Row n=5 : 1, 5, 10, 11, 10, 11, 10, 5, 1;
Row n=6 : 1, 6, 15, 21, 21, 21, 21, 15, 6, 1;
...
		

Crossrefs

Programs

  • PARI
    row(n)=Vecrev(polcoef((1 - y + y^2)/(1 - x*(1+y)) + O(x*x^n), n))
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Mar 03 2023

Formula

G.f.: A(x,y) = (1 - y + y^2)/(1 - x*(1+y)). - Andrew Howroyd, Mar 03 2023

A014628 Number of segments (and sides) created by diagonals of an n-gon in general position.

Original entry on oeis.org

3, 8, 20, 45, 91, 168, 288, 465, 715, 1056, 1508, 2093, 2835, 3760, 4896, 6273, 7923, 9880, 12180, 14861, 17963, 21528, 25600, 30225, 35451, 41328, 47908, 55245, 63395, 72416, 82368, 93313, 105315, 118440, 132756, 148333, 165243, 183560
Offset: 3

Views

Author

Keywords

Comments

There is a connection to A014626: number of intersection points of diagonals of n-gon, plus number of vertices, b(n) = n*(n+1)*(n^2-7*n+18)/24 and A006522: number of regions created by sides and diagonals of n-gon, c(n) = (n-1)*(n-2)*(n^2-3*n+12)/24. These are related by the Euler-formula: b(n) + c(n) - a(n) = 1. - Georg Wengler, Mar 31 2005

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n,2]+2Binomial[n,4],{n,3,50}] (* Harvey P. Dale, Oct 03 2020 *)

Formula

a(n) = (n^4-6*n^3+17*n^2-24*n)/12 + n; or equally n*(n-1)*(n^2-5*n+12)/12.
G.f.: x^3*(3-7*x+10*x^2-5*x^3+x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = C(n,2) + 2*C(n,4). - Gary Detlefs, Jun 06 2010

Extensions

G.f. proposed by Maksym Voznyy, checked and corrected by R. J. Mathar, Sep 16 2009
More terms from Erich Friedman
Offset corrected by Mohammad K. Azarian, Nov 19 2008
Offset corrected by Eric Rowland, Aug 15 2017
Showing 1-3 of 3 results.