A159355 Number of n X n arrays of squares of integers summing to 4.
5, 135, 1836, 12675, 58941, 211925, 635440, 1663821, 3921325, 8495531, 17179020, 32795295, 59626581, 103962825, 174792896, 284660665, 450710325, 695946991, 1050740300, 1554600411, 2258257485, 3226077405, 4538848176, 6296973125, 8624108701, 11671286355
Offset: 2
Links
- R. H. Hardin, Table of n, a(n) for n=2..100
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Maple
seq(binomial(n^2,4)+n^2, n=2..100);
-
PARI
Vec(x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 19 2018
Formula
Empirical: n^2*(n^2+1)*(n^4-7*n^2+18)/24. - R. J. Mathar, Aug 11 2009
From Robert Israel, Jun 19 2018: (Start)
Empirical formula confirmed.
a(n) = binomial(n^2,4)+n^2 = A014626(n^2).
(End)
From Colin Barker, Jun 19 2018: (Start)
G.f.: x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)
Comments