A014695 Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.
1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 0
Links
- A. Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc., 44 (1997), 806-812.
- Eric Weisstein's World of Mathematics, Simple Graph
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
Crossrefs
Denominators for the sequence whose numerators are A064038.
Programs
-
Mathematica
Table[Denominator[n*(n + 1)/4], {n, 0, 104}] (* Arkadiusz Wesolowski, Aug 09 2012 *) LinearRecurrence[{1,-1,1},{1,2,2},120] (* Harvey P. Dale, Jan 19 2020 *)
-
PARI
x='x+O('x^100); Vec((1+2*x+2*x^2+x^3)/(1-x^4)) \\ Altug Alkan, Dec 24 2015
-
Python
def A014695(n): return (1,2,2,1)[n&3] # Chai Wah Wu, Apr 17 2023
Formula
G.f.: (1+x+x^2)/((1-x)*(1+x^2)) = (1+2*x+2*x^2+x^3)/(1-x^4).
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))/2. - Jaume Oliver Lafont, Nov 28 2009
a(n) = (6-(1+i)*i^n-(1-i)*(-i)^n)/4 where i = sqrt(-1). - Klaus Brockhaus, May 14 2010
a(n) = denominator of Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Aug 09 2012
Extensions
More terms from Klaus Brockhaus, May 14 2010
Comments