cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014695 Poincaré series [or Poincare series] (or Molien series) for mod 2 cohomology of Q_8.

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, May 14 2010: (Start)
Periodic sequence: Repeat 1, 2, 2, 1.
a(n) = A130658(n+1).
Continued fraction expansion of (5+sqrt(221))/14.
Decimal expansion of 37/303. (End)

Crossrefs

Denominators for the sequence whose numerators are A064038.
Cf. A130658, A177841. - Klaus Brockhaus, May 14 2010

Programs

  • Mathematica
    Table[Denominator[n*(n + 1)/4], {n, 0, 104}] (* Arkadiusz Wesolowski, Aug 09 2012 *)
    LinearRecurrence[{1,-1,1},{1,2,2},120] (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    x='x+O('x^100); Vec((1+2*x+2*x^2+x^3)/(1-x^4)) \\ Altug Alkan, Dec 24 2015
    
  • Python
    def A014695(n): return (1,2,2,1)[n&3] # Chai Wah Wu, Apr 17 2023

Formula

G.f.: (1+x+x^2)/((1-x)*(1+x^2)) = (1+2*x+2*x^2+x^3)/(1-x^4).
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))/2. - Jaume Oliver Lafont, Nov 28 2009
a(n) = (6-(1+i)*i^n-(1-i)*(-i)^n)/4 where i = sqrt(-1). - Klaus Brockhaus, May 14 2010
a(n) = denominator of Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Aug 09 2012

Extensions

More terms from Klaus Brockhaus, May 14 2010