cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A141479 a(n) = A000111(n) + A014695(n).

Original entry on oeis.org

2, 3, 3, 3, 6, 18, 63, 273, 1386, 7938, 50523, 353793, 2702766, 22368258, 199360983, 1903757313, 19391512146, 209865342978, 2404879675443, 29088885112833, 370371188237526, 4951498053124098, 69348874393137903, 1015423886506852353
Offset: 0

Views

Author

Paul Curtz, Aug 09 2008

Keywords

Comments

a(n) is a multiple of 3 for n > 0.

Programs

  • Maple
    A000111 := proc(n) local x; n!*coeftayl( sec(x)+tan(x),x=0,n) ; end: A014695 := proc(n) local x; coeftayl( (1+2*x+2*x^2+x^3)/(1-x^4),x=0,n) ; end: A141479 := proc(n) A000111(n)+A014695(n) ; end: for n from 0 to 30 do printf("%a,",A141479(n)) ; od; # R. J. Mathar, Sep 12 2008
  • Python
    from itertools import count, islice, accumulate
    def A141479_gen(): # generator of terms
        yield from (2,3)
        blist = (0,1)
        for n in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=0)))[-1] + (2,1,1,2)[n & 3]
    A141479_list = list(islice(A141479_gen(),40)) # Chai Wah Wu, Jun 09-11 2022

Extensions

Extended by R. J. Mathar, Sep 12 2008

A257942 a(n) = (n+1)*(n+2)/A014695(n+1), where A014695 is repeat (1, 2, 2, 1).

Original entry on oeis.org

1, 3, 12, 20, 15, 21, 56, 72, 45, 55, 132, 156, 91, 105, 240, 272, 153, 171, 380, 420, 231, 253, 552, 600, 325, 351, 756, 812, 435, 465, 992, 1056, 561, 595, 1260, 1332, 703, 741, 1560, 1640, 861, 903, 1892, 1980, 1035, 1081, 2256, 2352, 1225, 1275, 2652
Offset: 0

Views

Author

Paul Curtz, Jul 14 2015

Keywords

Comments

Consider, for n >= 0, a sequence s(n). A useful transform is wi(n) = s(0), s(2), s(3), ..., i.e., s(n) without s(1).
For s(n) = 1/(n+1), wi(n)= 1, 1/3, 1/4, 1/5, ..., whose inverse binomial transform is f(n) = 1, -2/3, 7/12, -11/20, 8/15, -11/21, 29/56, -37/72, 23/45, -28/55, 67/132, -79/156, 46/91, -53/105, 121/240, -137/272, ...
The denominator of f(n) is a(n), for n >= 0.
If the numerator of f(n) is b(n), then it can be seen that b(n+1) = -(-1)^n* A226089(n).
Alternating a(n) - b(n) with a(n) + b(n) yields 0, 1, 5, 9, ... = A160050(n+1).
a(4n+1) is linked to the Rydberg-Ritz spectra of hydrogen.
h(n) = 0, 0, 1, 1, 4, 4, 3, 3, 8, 8, 5, 5, ... = duplicated A022998(n).
A022998(n) is linked to the Balmer series (see A246943(n)).
With an initial 0 and offset=0, a(-n) = a(n). Then (a(n+10) - a(n-10))/10 = 1, 6, 10, 7, 9, 22, 26, ... = g(n). a(n) mod 9 is of period 20.

Crossrefs

Cf. A002378(n+1), A014695(n+1)=A130658(n+2), A014634, A033567(n+1), A104188(n+1), 4*A007742(n+1), A160050 (in A226089), A022998, A109613, A000217(n+1), A246943.

Programs

  • Maple
    A257942:=n->(n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2): seq(A257942(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2015
  • Mathematica
    CoefficientList[Series[-(x^6 + 9 x^4 - 8 x^3 + 9 x^2 + 1)/((x - 1)^3 (x^2 + 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jul 14 2015 *)
    (* Using inverse binomial transform *) s[0]=1; s[n_] := 1/(n+2); f[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*s[k], {k, 0, n}]; Table[f[n]//Denominator, {n, 0, 50}] (* Jean-François Alcover, Jul 14 2015 *)
    LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 3, 12, 20, 15, 21, 56, 72, 45}, 55] (* Vincenzo Librandi, Jul 15 2015 *)
  • PARI
    Vec(-(x^6+9*x^4-8*x^3+9*x^2+1)/((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 14 2015
    
  • PARI
    a(n)=(n+1)*(n+2)/if(n%4<2,2,1) \\ Charles R Greathouse IV, Jul 14 2015

Formula

a(4n) = (2*n+1)*(4*n+1).
a(4n+1) = (2*n+1)*(4*n+3).
a(4n+2) = (4*n+3)*(4*n+4).
a(4n+3) = (4*n+4)*(4*n+5).
a(n) = A064038(n+2) * (period 4: repeat 1, 1, 4, 4).
From Colin Barker, Jul 14 2015: (Start)
a(n) = (-1/8+i/8)*(((-3-i*3)+i*(-i)^n+i^n)*(2+3*n+n^2)) where i=sqrt(-1).
G.f.: -(x^6+9*x^4-8*x^3+9*x^2+1) / ((x-1)^3*(x^2+1)^3). (End)
a(n) = h(n+2) * A109613(n+1).
a(n) = (n+1)*(n+2) * period 4:repeat (1, 1, 2, 2) /2.
From Wesley Ivan Hurt, Jul 18 2015: (Start)
a(n) = (n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2).
a(n) = 3*a(n-1)-6*a(n-2)+10*a(n-3)-12*a(n-4)+12*a(n-5)-10*a(n-6)+6*a(n-7)-3*a(n-8)+a(n-9), n>9. (End)
Sum_{n>=0} 1/a(n) = Pi/4 + 1. - Amiram Eldar, Aug 14 2022

A064038 Numerator of average number of swaps needed to bubble sort a string of n distinct letters.

Original entry on oeis.org

0, 1, 3, 3, 5, 15, 21, 14, 18, 45, 55, 33, 39, 91, 105, 60, 68, 153, 171, 95, 105, 231, 253, 138, 150, 325, 351, 189, 203, 435, 465, 248, 264, 561, 595, 315, 333, 703, 741, 390, 410, 861, 903, 473, 495, 1035, 1081, 564, 588, 1225, 1275, 663, 689, 1431, 1485, 770
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2001

Keywords

Comments

Denominators are given by the simple periodic sequence [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, ...] (= A014695) thus we get an average of 1/2, 3/2, 3, 5, 15/2, 21/2, 14, 18, etc. swappings required to bubble sort a string of 2, 3, 4, 5, 6, ... letters.

References

  • E. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms, Prentice-Hall, 1977, section 7.1, p. 287.

Crossrefs

Programs

  • Magma
    [Numerator(n*(n-1)/4): n in [1..100]]; // G. C. Greubel, Sep 21 2018
  • Maple
    [seq(numer((n*(n-1))/4), n=1..120)];
  • Mathematica
    f[n_] := Numerator[n (n - 1)/4]; Array[f, 56]
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# - 1] &, 56]
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1},{0,1,3,3,5,15,21,14,18},80] (* Harvey P. Dale, Jan 23 2023 *)
  • PARI
    vector(100, n, numerator(n*(n-1)/4)) \\ G. C. Greubel, Sep 21 2018
    

Formula

a(n) = numerator(A001809(n)/(n!)).
a(4n) = A033991(n).
a(4n+1) = A007742(n).
a(4n+2) = A014634(n).
a(4n+3) = A033567(n+1).
a(n+1) = A061041(8*n-4). - Paul Curtz, Jan 03 2011
G.f.: -x^2*(1+4*x^3+x^6) / ( (x-1)^3*(1+x^2)^3 ). - R. J. Mathar, Jan 03 2011
a(n+1) = A060819(n)*A060819(n+1).
a(n+1) = A000217(n)/(period 4:repeat 2,1,1,2=A014695(n+2)=A130658(n+3)).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Mar 04 2011
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +1*a(n-9). - Joerg Arndt, Mar 04 2011
a(n+1) = A026741(A000217(n)). - Paul Curtz, Apr 04 2011
a(n) = numerator(Sum_{k=0..n-1} k/2). - Arkadiusz Wesolowski, Aug 09 2012
a(n) = n*(n-1)*(3-i^(n*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Oct 01 2012, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 4 - Pi/2. - Amiram Eldar, Aug 09 2022
E.g.f.: x^2*(3*exp(x) + cos(x) + sin(x))/8. - Stefano Spezia, Aug 23 2025

A130658 Period 4: repeat [1, 1, 2, 2].

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1
Offset: 0

Views

Author

Paul Curtz, Jun 21 2007

Keywords

Comments

Continued fraction expansion of (9+sqrt(221))/14. - Klaus Brockhaus, May 03 2010
From Klaus Brockhaus, May 14 2010: (Start)
Decimal expansion of 34/303.
a(n) = A014695(n+3). (End)
Lengths of runs in A214090. - Reinhard Zumkeller, Jul 06 2012

Crossrefs

Programs

Formula

G.f.: ( 1+2*x^2 ) / ( (1-x)*(1+x^2) ). - R. J. Mathar, Jan 18 2011
a(n) = (n^3 mod 4 + (n+1)^3 mod 4 + 1)/2. - Gary Detlefs, Apr 15 2011
a(n) = -1/2*cos(1/2*Pi*n)-1/2*sin(1/2*Pi*n)+3/2. - Leonid Bedratyuk, May 13 2012
From Wesley Ivan Hurt, May 30 2015: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3), n>3.
a(n) = (3+(-1)^((2*n+3+(-1)^n)/4))/2. (End)
From Wesley Ivan Hurt, Jul 11 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = A021913(n) + 1. (End)

Extensions

More terms from Klaus Brockhaus, May 14 2010

A176126 Numerator of -A127276(n)/A001788(n).

Original entry on oeis.org

-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, 38, 89, 103, 59, 67, 151, 169, 94, 104, 229, 251, 137, 149, 323, 349, 188, 202, 433, 463, 247, 263, 559, 593, 314, 332, 701, 739, 389, 409, 859, 901, 472, 494, 1033, 1079, 563, 587, 1223, 1273, 662, 688, 1429, 1483, 769, 797, 1651, 1709, 884, 914, 1889, 1951, 1007, 1039, 2143, 2209, 1138, 1172, 2413, 2483, 1277, 1313, 2699, 2773, 1424, 1462, 3001, 3079, 1579
Offset: 0

Views

Author

Paul Curtz, Dec 07 2010

Keywords

Comments

The sequence of fractions starts -1/0, -1/1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, 53/55, 32/33, 38/39, ...
The denominators are apparently A064038(n+1) = A061041(4+8*n) (i.e., specified as numerators in A061041).
The difference between denominator and numerator is A014695(n), n > 0.

Crossrefs

Programs

  • Maple
    A001788 := proc(n) n*(n+1)*2^(n-2) ; end proc:
    A127276 := proc(n) 2^n-A001788(n) ; end proc:
    A176126 := proc(n) if n = 0 then -1 else 2^n/A001788(n)-1 ; numer(-%) ; end if; end proc:
    seq(A176126(n),n=0..40) ;

Formula

Conjecture: a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. (x^4-x^3+3*x^2-x+1)*(x^4-x^3-2*x^2-x+1) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).

A178242 Numerator of n*(5+n)/((n+1)*(n+4)).

Original entry on oeis.org

0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, 51, 117, 133, 75, 84, 187, 207, 114, 125, 273, 297, 161, 174, 375, 403, 216, 231, 493, 525, 279, 296, 627, 663, 350, 369, 777, 817, 429, 450, 943, 987, 516, 539, 1125, 1173, 611, 636, 1323, 1375, 714, 741, 1537, 1593
Offset: 0

Views

Author

Paul Curtz, Dec 20 2010

Keywords

Comments

Sequence of differences denominator(n) - numerator(n) = 1,2,2,1... = A014695(n).
Denominator: A160050(n+2).

Examples

			The reduced fractions are 0, 3/5, 7/9, 6/7, 9/10, 25/27, 33/35, 21/22, 26/27, 63/65, 75/77, 44/45, ..
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8) : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A178242 := proc(n) n*(5+n)/(n+1)/(n+4) ;  numer(%) ;end proc:
    seq(A178242(n),n=0..80) ; # R. J. Mathar, Dec 20 2010
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 5] &, 50, 0]
    Table[Numerator[n*(5+n)/((n+1)*(n+4))], {n,0,50}] (* G. C. Greubel, Sep 21 2018 *)
  • PARI
    vector(50, n, n--; numerator(n*(5+n)/((n+1)*(n+4)))) \\ G. C. Greubel, Sep 21 2018

Formula

a(n) = numerator(A176027(n)/A001793(n+1)).
a(n) = A060819(n)*A060819(n+5).
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: x*(-3+2*x-3*x^2-3*x^3+x^7) / ( (x-1)^3*(x^2+1)^3 ).
a(n) = n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8 = n*(n+5)*(3-i^(n*(n+1)))/8, where i=sqrt(-1); also a(n) = a(n-4)*A028557(n)/A028557(n-4) for n>4. - Bruno Berselli, Dec 30 2010
From Peter Bala, Aug 07 2022: (Start)
a(n) = numerator of n*(n+5)/4.
a(n) is quasi-polynomial in n: a(4*n) = n*(4*n+5) = A343560(n+1); a(4*n+1) = (2*n+3)*(4*n+1); a(4*n+2) = (2*n+1)*(4*n+7); a(4*n+3) = (n+2)*(4*n+3) = A180863(n+2). (End)
Sum_{n>=1} 1/a(n) = 112/75 - Pi/10. - Amiram Eldar, Aug 16 2022

A139131 Squarefree kernel of n*(n+1)/2.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 14, 6, 15, 55, 66, 78, 91, 105, 30, 34, 51, 57, 190, 210, 231, 253, 138, 30, 65, 39, 42, 406, 435, 465, 62, 66, 561, 595, 210, 222, 703, 741, 390, 410, 861, 903, 946, 330, 345, 1081, 282, 42, 35, 255, 1326, 1378, 159, 165, 770, 798, 1653, 1711
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Times@@(Transpose[FactorInteger[#]][[1]])&/@Accumulate[Range[60]] (* Harvey P. Dale, Jun 06 2013 *)
  • PARI
    a(n) = vecprod(factor(n*(n+1)/2)[, 1]); \\ Amiram Eldar, May 12 2025

Formula

a(n) = A007947(A000217(n)).
a(A014601(n)) = A078636(A014601(n)).
a(n) = A078636(n) / A014695(n).

A330707 a(n) = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4.

Original entry on oeis.org

0, 1, 3, 7, 13, 20, 28, 38, 50, 63, 77, 93, 111, 130, 150, 172, 196, 221, 247, 275, 305, 336, 368, 402, 438, 475, 513, 553, 595, 638, 682, 728, 776, 825, 875, 927, 981, 1036, 1092, 1150, 1210, 1271, 1333, 1397, 1463
Offset: 0

Views

Author

Paul Curtz, Dec 27 2019

Keywords

Comments

Essentially four odds followed by four evens.
Last digit is neither 4 nor 9.
Essentially twice or twin sequences in the hexagonal spiral from A002265.
21 21 21 22 22 22 22
21 14 14 14 14 15 15 23
20 13 8 8 8 9 9 15 23
20 13 8 4 4 4 4 9 15 23
20 13 7 3 1 1 1 5 9 16 23
20 13 7 3 1 0 0 2 5 10 16 24
19 12 7 3 0 0 2 5 10 16 24
19 12 7 3 2 2 5 10 16 24
19 12 6 6 6 6 10 17 24
19 12 11 11 11 11 17 25
18 18 18 18 17 17 25
.
There are 12 twin sequences. 6 of them (A001859, A006578, A077043, A231559, A024219, A281026) are in the OEIS. a(n) is the seventh.
0, 1, 3, 7, 13, 20, 28, 38, 50, ...
1, 2, 4, 6, 7, 8, 10, 12, 13, ...
1, 2, 2, 1, 1, 2, 2, 1, 1, ... period 4. See A014695.

Crossrefs

Programs

  • Magma
    [(3*n^2+n-1+ (-1)^Floor(n/2))/4: n in [0..60]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq((3*n^2+n-1+sqrt(2)*sin((2*n+1)*Pi/4))/4, n = 0..60); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{3,-4,4,-3,1}, {0,1,3,7,13}, 60] (* Amiram Eldar, Dec 27 2019 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^60))) \\ Colin Barker, Dec 27 2019
    
  • Sage
    [(3*n^2+n-1+(-1)^floor(n/2))/4 for n in (0..60)] # G. C. Greubel, Dec 30 2019

Formula

a(n) = A231559(-n).
a(1+2*n) + a(2+2*n) = A033579(n+1).
a(40+n) - a(n) = 1210, 1270, 1330, 1390, 1450, ... . See 10*A016921(n).
From Colin Barker, Dec 27 2019: (Start)
G.f.: x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
E.g.f.: (cos(x) + sin(x) + (-1 + 4*x + 3*x^2)*exp(x))/4. - Stefano Spezia, Dec 27 2019
a(n) = ( 3*n^2 + n - 1 + sqrt(2)*sin((2*n+1)*Pi/4) )/4 = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4. - G. C. Greubel, Dec 30 2019

A078636 a(n) = rad(n*(n+1)).

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 110, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 506, 138, 30, 130, 78, 42, 406, 870, 930, 62, 66, 1122, 1190, 210, 222, 1406, 1482, 390, 410, 1722, 1806, 946, 330, 690, 2162, 282, 42, 70, 510, 1326, 1378, 318, 330, 770, 798
Offset: 1

Views

Author

Jon Perry, Dec 12 2002

Keywords

Examples

			a(3) = 6 as rad(3*4) = rad(12) = rad(2*2*3) = 2*3 = 6.
		

Crossrefs

Programs

  • Maple
    A078636 := proc(n)
        A007947(n)*A007947(n+1) ;
    end proc:
    seq( A078636(n),n=1..10) ; # R. J. Mathar, Mar 15 2023
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := rad[n(n+1)];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2024 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    for (k=1,100,print1(rad(k*(k+1))", "))

Formula

From Reinhard Zumkeller, Aug 05 2003: (Start)
a(n) = rad(n*(n+1)) = rad(n)*rad(n+1).
mu(a(n)) = mu(rad(n*(n+1))) = mu(rad(n))*mu(rad(n+1)), where rad=A007947 and mu=A008683. (End)
From Reinhard Zumkeller, Apr 10 2008: (Start)
a(A014601(n)) = A139131(A014601(n)).
a(n) = A139131(n) * A014695(n). (End)
From Amiram Eldar, Apr 04 2025: (Start)
a(n) = A007947(A002378(n)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime} (1 - 2/(p*(p+1))) = 0.4716806... (A307868). (End)

A086314 Total number of edges in the distinct simple graphs on n nodes.

Original entry on oeis.org

0, 1, 6, 33, 170, 1170, 10962, 172844, 4944024, 270116280, 28022441260, 5448008695536, 1969579223350128, 1321964082404214704, 1649890513414726210320, 3840060942271653473695680, 16723638762440239422492944768, 136749695973639295091912681599872
Offset: 1

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Comments

a(n) = A000088(n)*n(n-1)/4.
a(n) = A000088(n)*A064038(n)/A014695(n).

Crossrefs

Programs

  • Mathematica
    << Combinatorica`; Table[D[GraphPolynomial[n, x], x] /. x -> 1, {n, 18}]  (* Geoffrey Critzer, Sep 29 2012 *)
    << Combinatorica`; Table[Binomial[n, 2] NumberOfGraphs[n]/2, {n, 18}] (* Eric W. Weisstein, May 17 2017 *)
Showing 1-10 of 18 results. Next