cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A014738 Squares of even triangular numbers.

Original entry on oeis.org

36, 100, 784, 1296, 4356, 6084, 14400, 18496, 36100, 44100, 76176, 90000, 142884, 164836, 246016, 278784, 396900, 443556, 608400, 672400, 894916, 980100, 1272384, 1382976, 1758276, 1898884, 2371600, 2547216, 3132900, 3348900
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> ((2*n+1)*(2*n+1-(-1)^n))^2/4); # G. C. Greubel, Jul 24 2019
  • Magma
    [((2*n+1)*(2*n+1-(-1)^n))^2/4: n in [1..30]]; // G. C. Greubel, Jul 24 2019
    
  • Mathematica
    Select[Accumulate[Range[100]],EvenQ]^2 (* Harvey P. Dale, Oct 09 2012 *)
  • PARI
    vector(30, n, ((2*n+1)*(2*n+1-(-1)^n))^2/4) \\ G. C. Greubel, Jul 24 2019
    
  • Sage
    [((2*n+1)*(2*n+1-(-1)^n))^2/4 for n in (1..30)] # G. C. Greubel, Jul 24 2019
    

Formula

a(n) = A014494(n + 1)^2. - Sean A. Irvine, Nov 18 2018
From G. C. Greubel, Jul 24 2019: (Start)
G.f.: 4*x*(9 +16*x +135*x^2 +64*x^3 +135*x^4 +16*x^5 +9*x^6)/((1-x)^5*(1+x)^4).
E.g.f.: x*(35+41*x+36*x^2+4*x^3)*cosh(x) + (1+9*x+77*x^2+28*x^3+4*x^4)* sinh(x). (End)
From Amiram Eldar, Mar 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 7*Pi^2/12 + 2*Pi - 12.
Sum_{n>=0} (-1)^n/a(n) = 12 - 4*G - 12*log(2), where G is Catalan's constant (A006752). (End)

Extensions

More terms from James Sellers
Showing 1-1 of 1 results.