cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014739 Expansion of (1+x^2)/(1-2*x+x^3).

Original entry on oeis.org

1, 2, 5, 9, 16, 27, 45, 74, 121, 197, 320, 519, 841, 1362, 2205, 3569, 5776, 9347, 15125, 24474, 39601, 64077, 103680, 167759, 271441, 439202, 710645, 1149849, 1860496, 3010347, 4870845, 7881194, 12752041, 20633237, 33385280, 54018519, 87403801
Offset: 0

Views

Author

Keywords

Comments

Number of wedged n-spheres in the homotopy type of the Boolean complex of the affine Coxeter group A~ n. - _Bridget Tenner, Jun 04 2008
In an infinite set of sequences such that a(n) = a(n-1) + a(n-2) + k; with a(0) = 1, a(1) = 2, and in A014739, k = 2. Cf. A171516 for a(0) = 1, a(1) = 2, k = 3. - Gary W. Adamson, Dec 10 2009

Examples

			The Boolean complex of the affine Coxeter group \widetilde{A}_3 is homotopy equivalent to the wedge of 5 3-spheres.
		

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+2)[2] -2); # G. C. Greubel, Jul 22 2019
  • Magma
    [Lucas(n+2)-2: n in [0..40]]; // G. C. Greubel, Jul 22 2019
    
  • Maple
    with(combinat): seq(fibonacci(n)+fibonacci(n+2)-2, n=1..37); # Zerinvary Lajos, Jan 31 2008
    g:=(1+z^2)/(1-z-z^2): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-2, n=2..38); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-2*x+x^3), {x,0,40}], x] (* Robert G. Wilson v, Feb 25 2005 *)
    a[0]=1; a[1]=2; a[2]=5; a[n_]:= a[n] = 2a[n-1]-a[n-3]; Array[a, 40, 0]
    LinearRecurrence[{2,0,-1},{1,2,5},40] (* Harvey P. Dale, Jun 26 2011 *)
    LucasL[Range[0,40]+2]-2 (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    Vec((1+x^2)/(1-2*x+x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+3)+f(n+1)-2) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [lucas_number2(n+2,1,-1)-2 for n in (0..40)] # G. C. Greubel, Jul 22 2019
    

Formula

Partial sums of Lucas numbers A000032 less 1.
From Paul Barry, Sep 03 2003: (Start)
G.f.: (1+x^2)/((1-x)*(1-x-x^2)).
a(n) = ((3+sqrt(5))((1+sqrt(5))/2)^n+(3-sqrt(5))((1-sqrt(5))/2)^n)/2-2. (End)
From Zerinvary Lajos, Jan 31 2008: (Start)
a(n) = A001610(n+1)-1.
a(n) = F(n+1) + F(n+3) - 2 = A000071(n+1) + A000071(n+3), where F(n) is the n-th Fibonacci number. [corrected by R. J. Mathar, Mar 14 2011] (End)
a(n) = A000032(n+2) - 2. - Matthew Vandermast, Nov 05 2009
a(n) = 2*a(n-1) - a(n-3). - Vincenzo Librandi, Dec 31 2010

Extensions

More terms from Robert G. Wilson v, Feb 25 2005