A014794 Squares of even octagonal numbers.
0, 64, 1600, 9216, 30976, 78400, 166464, 313600, 541696, 876096, 1345600, 1982464, 2822400, 3904576, 5271616, 6969600, 9048064, 11560000, 14561856, 18113536, 22278400, 27123264, 32718400, 39137536, 46457856, 54760000
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[16*n^2*(3*n-1)^2: n in [1..50]]; // Vincenzo Librandi, Jan 07 2012
-
Mathematica
Table[16*n^2*(3*n-1)^2,{n,0,30}] (* Vincenzo Librandi, Jan 07 2012 *) LinearRecurrence[{5,-10,10,-5,1},{0,64,1600,9216,30976},30] (* Harvey P. Dale, Nov 27 2015 *) Select[PolygonalNumber[8,Range[0,50]],EvenQ]^2 (* Harvey P. Dale, Aug 03 2025 *)
-
PARI
a(n) = 16*n^2*(3*n-1)^2 \\ Vincenzo Librandi, Jan 07 2012
Formula
G.f.: 64*x*(1+20*x+29*x^2+4*x^3)/(1-x)^5. - Colin Barker, Jan 06 2012
a(n) = 16n^2*(3n-1)^2. - Vincenzo Librandi, Jan 07 2012
E.g.f.: 16*exp(x)*x*(4 + 46*x + 48*x^2 + 9*x^3). - Stefano Spezia, Apr 16 2022
Extensions
More terms from Patrick De Geest, Aug 2000
a(8) corrected by Vincenzo Librandi, Jan 07 2012