cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014829 a(1)=1, a(n) = 6*a(n-1) + n.

Original entry on oeis.org

1, 8, 51, 310, 1865, 11196, 67183, 403106, 2418645, 14511880, 87071291, 522427758, 3134566561, 18807399380, 112844396295, 677066377786, 4062398266733, 24374389600416, 146246337602515, 877478025615110, 5264868153690681, 31589208922144108, 189535253532864671, 1137211521197188050
Offset: 1

Views

Author

Keywords

Programs

Formula

a(n) = (6^(n+1) - 5*n - 6)/25. - Rolf Pleisch, Oct 25 2010
Binomial transform of x*(1+x)/(1-5*x), or A003948 with a leading 0. a(n) = Sum_{k=0..n} (n-k)*6^k = Sum_{k=0..n} k*6^(n-k); a(n) = Sum_{k=0..n} binomial(n+2,k+2)*5^k [Offset 0]. - Paul Barry, Jul 30 2004
From Colin Barker, Jun 03 2020: (Start)
G.f.: x/((1 - x)^2*(1 - 6*x)).
a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3) for n > 3. (End)
E.g.f.: exp(x)*(6*exp(5*x) - 5*x - 6)/25. - Elmo R. Oliveira, Mar 29 2025