A014847 Numbers k such that k-th Catalan number C(2k,k)/(k+1) is divisible by k.
1, 2, 6, 15, 20, 28, 42, 45, 66, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 483, 493
Offset: 1
Keywords
Links
- Franklin T. Adams-Watters and Chai Wah Wu, Table of n, a(n) for n = 1..10000 n=1..1069 (a(n) <= 10000) from Franklin T. Adams-Watters
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems, sect. III: Binomial coefficients modulo integers, binomod.gp (V. 1.4, 11/2015).
- Christian Ballot, Lucasnomial Fuss-Catalan Numbers and Related Divisibility Questions, J. Int. Seq., Vol. 21 (2018), Article 18.6.5.
- Kevin Ford and Sergei Konyagin, Divisibility of the central binomial coefficient binomial(2n, n), Trans. Amer. Math. Soc., Vol. 374, No. 2 (2021), pp. 923-953; arXiv preprint, arXiv:1909.03903 [math.NT], 2019-2020.
- Carl Pomerance, Divisors of the middle binomial coefficient, The American Mathematical Monthly, Vol. 122, No. 7 (2015), pp. 636-644; alternative link.
- Carlo Sanna, Central binomial coefficients divisible by or coprime to their indices, Int. J. Number Theory, Vol. 14, No. 4 (2018), pp. 1135-1141.
- Eric Weisstein's World of Mathematics, Disk Line Picking.
Crossrefs
Programs
-
Magma
[n: n in [1..500] | IsZero((Binomial(2*n, n) div (n+1)) mod n)]; // Vincenzo Librandi, Jan 29 2016
-
Maple
filter:= proc(n) local F, f, r, c, t,j; F:= ifactors(n)[2]; for f in F do r:= convert(n,base,f[1]); c:= 0: t:= 0: for j from 1 to nops(r) do if 2*r[j]+c >= f[1] then c:= 1; t:= t+1; else c:= 0 fi; od; if t < f[2] then return false fi; od; true end proc: select(filter, [$1..1000]); # Robert Israel, Jan 07 2018
-
Mathematica
fQ[n_] := IntegerQ[Binomial[2n, n]/ n]; Select[ Range@495, fQ@# &] (* Robert G. Wilson v, Jun 19 2006 *) Select[Table[{CatalanNumber[n],n},{n,500}],Divisible[#[[1]],#[[2]]]&][[All,2]] (* Harvey P. Dale, Nov 07 2022 *)
-
PARI
is_A014847(n)=!binomod(2*n,n,n) \\ Suitable for large n. Using binomod.gp by M. Alekseyev, cf. links. - M. F. Hasler, Nov 11 2015
-
PARI
for(n=1, 1e3, if(binomial(2*n, n)/(n+1) % n==0, print1(n", "))) \\ Altug Alkan, Nov 11 2015
-
Python
from _future_ import division A014847_list, b = [], 1 for n in range(1,10**3): if not b % n: A014847_list.append(n) b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 27 2016
Formula
It seems that a(n)/n is bounded and more precisely that lim_{n -> infinity} a(n)/n = C exists with 9 <= c < 10. - Benoit Cloitre, Aug 13 2002
a(n) = A004782(n) - 1. - Enrique Pérez Herrero, Feb 03 2013
Comments