cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A218721 a(n) = (18^n-1)/17.

Original entry on oeis.org

0, 1, 19, 343, 6175, 111151, 2000719, 36012943, 648232975, 11668193551, 210027483919, 3780494710543, 68048904789775, 1224880286215951, 22047845151887119, 396861212733968143, 7143501829211426575, 128583032925805678351
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 18 (A001027), q-integers for q=18: diagonal k=1 in triangle A022182.
Partial sums are in A014901. Also, the sequence is related to A014935 by A014935(n) = n*a(n) - Sum_{i=0..n-1} a(i), for n>0. - Bruno Berselli, Nov 06 2012
From Bernard Schott, May 06 2017: (Start)
Except for 0, 1 and 19, all terms are Brazilian repunits numbers in base 18, and so belong to A125134. From n = 3 to n = 8286, all terms are composite. See link "Generalized repunit primes".
As explained in the extensions of A128164, a(25667) = (18^25667 - 1)/17 would be (is) the smallest prime in base 18. (End)

Examples

			a(3) = (18^3 - 1)/17 = 343 = 7 * 49; a(6) = (18^6 - 1)/17 = 2000719 = 931 * 2149. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

a(n) = floor(18^n/17).
G.f.: x/((1-x)*(1-18*x)). - Bruno Berselli, Nov 06 2012
a(n) = 19*a(n-1) - 18*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(17*x) - 1)/17. - Stefano Spezia, Mar 11 2023

A014901 a(1)=1, a(n) = 18*a(n-1) + n.

Original entry on oeis.org

1, 20, 363, 6538, 117689, 2118408, 38131351, 686364326, 12354557877, 222382041796, 4002876752339, 72051781542114, 1296932067758065, 23344777219645184, 420205989953613327, 7563707819165039902, 136146740744970718253, 2450641333409472928572, 44111544001370512714315
Offset: 1

Views

Author

Keywords

Crossrefs

Row n=18 of A126885.
Cf. A014935.

Programs

  • Magma
    I:=[1, 20, 363]; [n le 3 select I[n] else 20*Self(n-1) - 37*Self(n-2) + 18*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 20 2012
    
  • Mathematica
    LinearRecurrence[{20, -37, 18}, {1, 20, 363}, 20] (* Vincenzo Librandi, Oct 20 2012 *)
    nxt[{n_,a_}]:={n+1,18a+n+1}; NestList[nxt,{1,1},20][[All,2]] (* Harvey P. Dale, Oct 08 2017 *)
  • Maxima
    a[1]:1$
    a[2]:20$
    a[3]:363$
    a[n]:=20*a[n-1]-37*a[n-2]+18*a[n-3]$
    A014901(n):=a[n]$
    makelist(A014901(n),n,1,30); /* Martin Ettl, Nov 06 2012 */

Formula

a(1)=1, a(2)=20, a(3)=363, a(n) = 20*a(n-1) - 37*a(n-2) + 18*a(n-3). - Vincenzo Librandi, Oct 20 2012
From Elmo R. Oliveira, Mar 29 2025: (Start)
G.f.: x/((1-18*x)*(1-x)^2).
E.g.f.: exp(x)*(18*exp(17*x) - 17*x - 18)/289.
a(n) = (18^(n+1) - 17*n - 18)/289. (End)
a(-1-n) = A014935(n)/18^n for all n in Z. - Michael Somos, Mar 29 2025
Showing 1-2 of 2 results.