A014950 Numbers m such that m divides 10^m - 1.
1, 3, 9, 27, 81, 111, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 8991, 12321, 13203, 19683, 20439, 26973, 36963, 39609, 59049, 61317, 80919, 110889, 118827, 151959, 177147, 183951, 242757, 332667, 356481, 455877, 488511, 531441, 551853, 728271
Offset: 1
Keywords
References
- J. D. E. Konhauser et al., Which Way Did The Bicycle Go? Problem 80 pp. 26; 133, Dolciani Math. Exp., No. 18, MAA, Washington DC, 1996.
Links
- Hans Havermann, Table of n, a(n) for n = 1..1600 (first 800 terms from Robert G. Wilson v)
- C. Cooper and R. E. Kennedy, Niven Repunits and 10^n = 1 (mod n), The Fibonacci Quarterly, pp. 139-143, vol 27, May 02 1989.
- Hans Havermann, A014950 factorized and atomized.
Programs
-
Mathematica
Select[ Range[3, 1000000, 6], PowerMod[10, #, #] == 1 &] (* modified by Robert G. Wilson v, Dec 03 2013 *) k = 3; A014950 = {1}; While[k < 1000000, If[ PowerMod[ 10, k, k] == 1, AppendTo[ A014950, k]; Print@ k]; k += 6]; A014950 (* Robert G. Wilson v, Nov 29 2013 *)
-
PARI
is(n)=Mod(10,n)^n==1 \\ Charles R Greathouse IV, Nov 29 2013
Formula
Solutions to 10^m == 1 (mod m). - Vladeta Jovovic
Extensions
More terms from Vladeta Jovovic, Dec 18 2001
More terms from Larry Reeves (larryr(AT)acm.org), Jan 06 2005
Edited by Max Alekseyev, May 20 2011
Comments