cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A232769 Numbers n not divisible by 9 such that n divides 10^n - 1 (A014950).

Original entry on oeis.org

1, 3, 111, 4107, 151959, 5622483, 22494039, 208031871, 225121209, 832279443, 7697179227, 8329484733, 27486820443, 30794339391, 92366302683, 123199851603, 230915528769, 284795631399, 308190935121, 1017012356391
Offset: 1

Views

Author

Keywords

Comments

The above terms reduced modulo 9 yield: 1, 3, 3, 3, 3, 3, 6, 3, 6, 6, 3, 6, 3, 6, 3, 3, 3, 3, 6, 3, 6, …, .
The only primes less than a billion which can divide members of this sequence are 3, 37, 5477, 607837, 1519591, 2028119, 15195911, 18235093, 44988079, 74202397, 247629013, 337349203, 395397319, 462411133, and 674699071. - Charles R Greathouse IV, Dec 03 2013

Crossrefs

Cf. A014950.

Programs

  • Mathematica
    k = 3; lst = {1}; While[k < 10^10 + 1, If[ PowerMod[10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 3; If[ PowerMod[ 10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 6]; lst
  • PARI
    is(n)=n%9 && Mod(10,n)^n==1 \\ Charles R Greathouse IV, Dec 03 2013
    
  • PARI
    forstep(n=1,1e8,[2, 4, 4, 2, 4, 2, 2, 2, 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 4, 4, 2, 2], if(Mod(10,n)^n==1,print1(n", "))) \\ Charles R Greathouse IV, Dec 03 2013

Extensions

a(22)-a(26) from Ray Chandler, Dec 11 2013
B-file extended through a(55) by Ray Chandler, Dec 24 2013

A127100 Numbers k such that k^2 divides 10^k-1.

Original entry on oeis.org

1, 3, 9, 111, 333, 3003003, 111111111, 225121209, 675363627, 27486820443, 32119664517, 82460461329, 24048075051027, 90180273183093, 225346555330209, 889778776887999, 3336670107774441, 10717272100393839, 19885751580714849, 27514334750263443
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007, Jan 07 2006

Keywords

Comments

Subsequence of A014950.
First 7 terms are palindromes. a(n) is divisible by 3 for 1Alexander Adamchuk, Jan 25 2007
Except for 3, also numbers n such that the decimal expansion of 1/n^2 has period n. - Arkadiusz Wesolowski, Mar 13 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[10, #, #^2 ]-1)/#^2 ]&]

Extensions

More terms from Ryan Propper, Jan 06 2007
Further terms and edited by Max Alekseyev, May 09 2010

A177243 Numbers k such that k^3 divides 10^(k^2) - 1.

Original entry on oeis.org

1, 3, 9, 111, 333, 1467, 6813, 54279, 84573, 252081, 607947, 665667, 1001001, 1110519, 1823841, 3003003, 3129201, 12914001, 13785399, 22161609, 22957083, 37037037, 41089203, 49235049, 64021761, 92840751, 108503721, 111111111
Offset: 1

Views

Author

Alexander Adamchuk, May 06 2010

Keywords

Crossrefs

Cf. A127100 (k^2 divides 10^k-1), A014950 (k divides 10^k-1).

Programs

  • Mathematica
    Join[{1},Select[Range[1112*10^5],PowerMod[10,#^2,#^3]==1&]] (* Harvey P. Dale, Sep 10 2019 *)

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A014956 Positive integers k such that k divides 14^k - 1.

Original entry on oeis.org

1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k such that k divides A014929(k).
13 divides a(n) for n > 1. All powers of 13 are terms. All a(n) that are not powers of 13 are divisible either by 157 or 677 or both. - Alexander Adamchuk, May 14 2010
Prime divisors of a(n) in order of appearance: {13, 157, 677, 11933, 122147, 52807, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)

Extensions

2 more terms from R. J. Mathar, Mar 05 2008
a(8)-a(23) from Alexander Adamchuk, May 14 2010
a(24)-a(44) from Alexander Adamchuk, May 16 2010
Edited by Max Alekseyev, Sep 10 2011

A066364 Prime divisors of solutions to 10^n == 1 (mod n).

Original entry on oeis.org

3, 37, 163, 757, 1999, 5477, 8803, 9397, 13627, 15649, 36187, 40879, 62597, 106277, 147853, 161839, 215893, 231643, 281683, 295759, 313471, 333667, 338293, 478243, 490573, 607837, 647357, 743933, 988643, 1014877, 1056241, 1168711, 1353173, 1390757, 1487867, 1519591, 1627523, 1835083, 1912969, 2028119, 2029759, 2064529
Offset: 1

Views

Author

Vladeta Jovovic, Dec 21 2001

Keywords

Examples

			10^27-1 = 3^5*37*757*333667*440334654777631 is a solution to the congruence.
		

Crossrefs

Programs

  • Mathematica
    fQ[p_] := Block[{fi = First@# & /@ FactorInteger[ MultiplicativeOrder[ 10, p]]}, Union[ MemberQ[ lst, #] & /@ fi] == {True}]; k = 4; lst = {3}; While[k < 180000, If[ p = Prime@ k; fQ@ p, AppendTo[ lst, p]; Print@ p]; k++]; lst (* Robert G. Wilson v, Nov 30 2013 *)
  • PARI
    S=Set([3]); forprime(p=7,10^6, v=factorint(znorder(Mod(10,p)))[,1]; if(length(setintersect(S,Set(v)))==length(v), S=setunion(S,[p])) ); print(vecsort(eval(S))) \\ Max Alekseyev, Nov 16 2005

Formula

A prime p is a term iff all prime divisors of ord_p(10) are terms, where ord_p(10) is the order of 10 modulo p. - Max Alekseyev, Nov 16 2005

Extensions

Edited by Max Alekseyev, Nov 16 2005
Edited by Hans Havermann, Jul 11 2014

A068382 Numbers k such that k divides 9^k - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 800, 820, 880, 1000, 1024, 1088, 1100, 1210, 1220, 1250, 1280, 1312, 1360, 1544, 1600, 1640, 1760
Offset: 1

Views

Author

Benoit Cloitre, Mar 05 2002

Keywords

Comments

For all m the sequence includes 2^m, 10^m, 2*10^m, 10*2^m.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[10000], PowerMod[9, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
  • PARI
    isok(n) = Mod(9, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016

A014957 Positive integers k that divide 16^k - 1.

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k that divide A014931(k).

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
  • Python
    A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021

Extensions

Edited by Max Alekseyev, Sep 10 2011

A068383 Numbers k such that k divides 11^k - 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1

Views

Author

Benoit Cloitre, Mar 05 2002

Keywords

Comments

For all k, 2^k, 10^k, 2 * 3^k and 10 * 3^k are in the sequence.

Examples

			11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence.
11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence.
11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
  • PARI
    isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
    
  • Scala
    def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m }
    List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
Showing 1-10 of 27 results. Next