A232769
Numbers n not divisible by 9 such that n divides 10^n - 1 (A014950).
Original entry on oeis.org
1, 3, 111, 4107, 151959, 5622483, 22494039, 208031871, 225121209, 832279443, 7697179227, 8329484733, 27486820443, 30794339391, 92366302683, 123199851603, 230915528769, 284795631399, 308190935121, 1017012356391
Offset: 1
-
k = 3; lst = {1}; While[k < 10^10 + 1, If[ PowerMod[10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 3; If[ PowerMod[ 10, k, k] == 1, AppendTo[ lst, k]; Print@ k]; k += 6]; lst
-
is(n)=n%9 && Mod(10,n)^n==1 \\ Charles R Greathouse IV, Dec 03 2013
-
forstep(n=1,1e8,[2, 4, 4, 2, 4, 2, 2, 2, 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 4, 4, 2, 2], if(Mod(10,n)^n==1,print1(n", "))) \\ Charles R Greathouse IV, Dec 03 2013
A127100
Numbers k such that k^2 divides 10^k-1.
Original entry on oeis.org
1, 3, 9, 111, 333, 3003003, 111111111, 225121209, 675363627, 27486820443, 32119664517, 82460461329, 24048075051027, 90180273183093, 225346555330209, 889778776887999, 3336670107774441, 10717272100393839, 19885751580714849, 27514334750263443
Offset: 1
A177243
Numbers k such that k^3 divides 10^(k^2) - 1.
Original entry on oeis.org
1, 3, 9, 111, 333, 1467, 6813, 54279, 84573, 252081, 607947, 665667, 1001001, 1110519, 1823841, 3003003, 3129201, 12914001, 13785399, 22161609, 22957083, 37037037, 41089203, 49235049, 64021761, 92840751, 108503721, 111111111
Offset: 1
-
Join[{1},Select[Range[1112*10^5],PowerMod[10,#^2,#^3]==1&]] (* Harvey P. Dale, Sep 10 2019 *)
A014960
Integers n such that n divides 24^n - 1.
Original entry on oeis.org
1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1
Prime factors are listed in
A087807.
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014959 (b=22).
-
s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)
Edited and terms a(13) onward added by
Max Alekseyev, Nov 16 2019
A014956
Positive integers k such that k divides 14^k - 1.
Original entry on oeis.org
1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A128360.
-
Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)
A066364
Prime divisors of solutions to 10^n == 1 (mod n).
Original entry on oeis.org
3, 37, 163, 757, 1999, 5477, 8803, 9397, 13627, 15649, 36187, 40879, 62597, 106277, 147853, 161839, 215893, 231643, 281683, 295759, 313471, 333667, 338293, 478243, 490573, 607837, 647357, 743933, 988643, 1014877, 1056241, 1168711, 1353173, 1390757, 1487867, 1519591, 1627523, 1835083, 1912969, 2028119, 2029759, 2064529
Offset: 1
10^27-1 = 3^5*37*757*333667*440334654777631 is a solution to the congruence.
-
fQ[p_] := Block[{fi = First@# & /@ FactorInteger[ MultiplicativeOrder[ 10, p]]}, Union[ MemberQ[ lst, #] & /@ fi] == {True}]; k = 4; lst = {3}; While[k < 180000, If[ p = Prime@ k; fQ@ p, AppendTo[ lst, p]; Print@ p]; k++]; lst (* Robert G. Wilson v, Nov 30 2013 *)
-
S=Set([3]); forprime(p=7,10^6, v=factorint(znorder(Mod(10,p)))[,1]; if(length(setintersect(S,Set(v)))==length(v), S=setunion(S,[p])) ); print(vecsort(eval(S))) \\ Max Alekseyev, Nov 16 2005
A068382
Numbers k such that k divides 9^k - 1.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 800, 820, 880, 1000, 1024, 1088, 1100, 1210, 1220, 1250, 1280, 1312, 1360, 1544, 1600, 1640, 1760
Offset: 1
-
Join[{1}, Select[Range[10000], PowerMod[9, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
-
isok(n) = Mod(9, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
A014957
Positive integers k that divide 16^k - 1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A014956,
A177805,
A177807,
A128358,
A128360
-
Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
-
A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021
A068383
Numbers k such that k divides 11^k - 1.
Original entry on oeis.org
1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1
11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence.
11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence.
11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
-
Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
-
isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
-
def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m }
List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
Showing 1-10 of 27 results.
Comments