A014960
Integers n such that n divides 24^n - 1.
Original entry on oeis.org
1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1
Prime factors are listed in
A087807.
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014959 (b=22).
-
s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)
Edited and terms a(13) onward added by
Max Alekseyev, Nov 16 2019
A014956
Positive integers k such that k divides 14^k - 1.
Original entry on oeis.org
1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A128360.
-
Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)
A015969
Numbers k that divide 16^k + 1.
Original entry on oeis.org
1, 17, 289, 4913, 83521, 1419857, 6029713, 12027313, 24137569, 85525793, 102505121, 204464321, 410338673, 1453938481, 1742587057, 3475893457, 6975757441, 24716954177, 29623979969, 59090188769, 111612202577, 118587876497, 420188221009, 500540685121, 503607659473
Offset: 1
Cf.
A006521,
A015949,
A015950,
A015951,
A015953,
A015954,
A015955,
A015957,
A015958,
A015960,
A015961,
A015963,
A015965,
A015968,
A014957.
Missing terms a(10), a(14), a(18), and a(23) from
Giovanni Resta, Mar 23 2020
A177807
Numbers k that divide 17^k - 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1
Cf.
A014960,
A014956,
A014957,
A014951,
A014949,
A014946,
A014945,
A067945,
A128358,
A128360,
A177805.
-
{1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
A014959
Integers k such that k divides 22^k - 1.
Original entry on oeis.org
1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014960 (b=24).
-
nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)
A211203
Prime numbers p such that p-1 divides (2^(p-1)+1)*(2^p-2).
Original entry on oeis.org
2, 3, 7, 11, 19, 31, 43, 79, 127, 151, 163, 211, 251, 271, 311, 331, 379, 487, 547, 631, 751, 811, 883, 991, 1051, 1171, 1231, 1459, 1471, 1831, 1951, 1999, 2251, 2311, 2531, 2647, 2731, 2791, 2971, 3079, 3331, 3511, 3631, 3691, 3823, 3943, 4051, 4447, 4651
Offset: 1
Cf.
A069051 (primes p such that p - 1 divides 2^p - 2)
Cf.
A211349 (primes p such that p - 1 divides 2^p + 2)
-
A211203:=proc(q)
local n;
for n from 1 to q do
if type((2^(2*ithprime(n)-1)-2)/(ithprime(n)-1),integer) then print(ithprime(n));
fi; od; end:
A211203(10000000); # Paolo P. Lava, Feb 18 2013
-
Select[Prime[Range[1000]], Mod[1/2*(2^# + 2)*(2^# - 2), # - 1] == 0 &]
-
is(p) = lift((Mod(2,p-1)^(p-1)+1)*(Mod(2,p-1)^p-2))==0 \\ David A. Corneth, Mar 25 2021
-
from sympy import primerange
A211203_list = [p for p in primerange(1,10**6) if p == 2 or p == 3 or pow(2,2*p-1,p-1) == 2] # Chai Wah Wu, Mar 25 2021
A014962
Odd numbers k that divide 25^k - 1.
Original entry on oeis.org
1, 3, 9, 21, 27, 63, 81, 93, 147, 171, 189, 243, 279, 441, 513, 567, 609, 651, 729, 837, 903, 1029, 1197, 1323, 1539, 1701, 1827, 1953, 2187, 2511, 2667, 2709, 2883, 2943, 3087, 3249, 3591, 3969, 4263, 4401, 4557, 4617, 5103, 5301, 5481, 5859, 6321
Offset: 1
Cf.
A014943,
A014945,
A014946,
A014949,
A014950,
A014951,
A014956,
A014957,
A128358,
A128360,
A014959,
A014960.
-
select(t -> 25 &^ t - 1 mod t = 0, [seq(i,i=1..10^4,2)]); # Robert Israel, Oct 04 2020
Showing 1-8 of 8 results.
Comments