cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069051 Primes p such that p-1 divides 2^p-2.

Original entry on oeis.org

2, 3, 7, 19, 43, 127, 163, 379, 487, 883, 1459, 2647, 3079, 3943, 5419, 9199, 11827, 14407, 16759, 18523, 24967, 26407, 37339, 39367, 42463, 71443, 77659, 95923, 99079, 113779, 117307, 143263, 174763, 175447, 184843, 265483, 304039, 308827
Offset: 1

Views

Author

Benoit Cloitre, Apr 03 2002

Keywords

Comments

These are the prime values of n such that 2^n == 2 (mod n*(n-1)). - V. Raman, Sep 17 2012
These are the prime values p such that n^(2^(p-1)) is congruent to n or -n (mod p) for all n in Z/pZ, the commutative ring associated with each term. This results follows from Fermat's little theorem. - Philip A. Hoskins, Feb 08 2013
A prime p is in this sequence iff p-1 belongs to A014741. For p>2, this is equivalent to (p-1)/2 belonging to A014945. - Max Alekseyev, Aug 31 2016
From Thomas Ordowski, Nov 20 2018: (Start)
Conjecture: if n-1 divides 2^n-2, then (2^n-2)/(n-1) is squarefree.
Numbers n such that b^n == b (mod (n-1)*n) for every integer b are 2, 3, 7, and 43; i.e., only prime numbers of the form A014117(k) + 1. (End)
These are primes p such that p^2 divides b^(2^p-2) - 1 for every b coprime to p. - Thomas Ordowski, Jul 01 2024

Crossrefs

a(n)-1 form subsequence of A014741; (a(n)-1)/2 for n>1 forms a subsequence of A014945.

Programs

  • GAP
    Filtered([1..350000],p->IsPrime(p) and (2^p-2) mod (p-1)=0); # Muniru A Asiru, Dec 03 2018
    
  • Magma
    [p : p in PrimesUpTo(310000) | IsZero((2^p-2) mod (p-1))]; // Vincenzo Librandi, Dec 03 2018
    
  • Mathematica
    Select[Prime[Range[10000]], Mod[2^# - 2, # - 1] == 0 &] (* T. D. Noe, Sep 19 2012 *)
    Join[{2,3},Select[Prime[Range[30000]],PowerMod[2,#,#-1]==2&]] (* Harvey P. Dale, Apr 17 2022 *)
  • PARI
    isA069051(p)=Mod(2,p-1)^p==2 && isprime(p); \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from sympy import prime
    for n in range(1,350000):
        if (2**prime(n)-2) % (prime(n)-1)==0:
            print(prime(n)) # Stefano Spezia, Dec 07 2018

Extensions

a(1) added by Charles R Greathouse IV, Sep 19 2012

A211349 Primes p such that p-1 divides 2^p + 2.

Original entry on oeis.org

2, 3, 11, 251, 5051, 16811, 2025251, 8751251, 16607051, 28257611, 69005051, 78906251, 176775251, 210381251, 372175451, 550427051, 707025251, 854704451, 1866788051, 2441406251, 2605806251, 4249701251, 5469531251, 9304386251, 10315761251, 10915095251
Offset: 1

Views

Author

Philip A. Hoskins, Feb 06 2013

Keywords

Comments

Prime p>2 is in this sequence iff (p-1)/2 is in A015950. - Max Alekseyev, Dec 26 2017

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[2^# + 2, # - 1] == 0 &]
  • PARI
    N=10^9;
    default(primelimit,N);
    forprime(p=2,N, if (-2==Mod(2,p-1)^p, print1(p,", ")));
    /* Joerg Arndt, Feb 06 2013 */
    
  • Python
    from sympy import primerange
    A211349_list = [p for p in primerange(1,10**6) if p == 2 or pow(2,p,p-1) == p-3] # Chai Wah Wu, Mar 25 2021

Extensions

a(19)-a(47) from Giovanni Resta, Feb 10 2013
a(48)-a(177) from Max Alekseyev, Jan 06 2018
Showing 1-2 of 2 results.