cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A014741 Numbers k such that k divides 2^(k+1) - 2.

Original entry on oeis.org

1, 2, 6, 18, 42, 54, 126, 162, 294, 342, 378, 486, 882, 1026, 1134, 1314, 1458, 1806, 2058, 2394, 2646, 3078, 3402, 3942, 4374, 5334, 5418, 6174, 6498, 7182, 7938, 9198, 9234, 10206, 11826, 12642, 13122, 14154, 14406, 16002, 16254
Offset: 1

Views

Author

Keywords

Comments

Also, numbers k such that k divides Eulerian number A000295(k+1) = 2^(k+1) - k - 2.
Also, numbers k such that k divides A086787(k) = Sum_{i=1..k} Sum_{j=1..k} i^j.
All terms greater than 1 are even; for a proof, see comment in A036236. - Max Alekseyev, Feb 03 2012
If k>1 is a term, then 3*k is also a term. - Alexander Adamchuk, Nov 03 2006
Prime numbers of the form a(m)+1 are given by A069051. - Max Alekseyev, Nov 14 2012
The number 2^m - 2 is a term of this sequence if and only if m - 1 is a term. - Thomas Ordowski, Jul 01 2024

Crossrefs

Programs

Formula

For n > 1, a(n) = 2*A014945(n-1). - Max Alekseyev, Nov 14 2012

A216822 Numbers n such that 2^n == 2 (mod n*(n+1)).

Original entry on oeis.org

1, 5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 561, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1905, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917
Offset: 1

Views

Author

V. Raman, Sep 17 2012

Keywords

Comments

a(17) = 561 is the first composite number in the sequence. - Charles R Greathouse IV, Sep 19 2012
Intersection of { A015919(n) } and { A192109(n)-1 }. - Max Alekseyev, Apr 22 2013

Crossrefs

Cf. A069051 (prime n such that 2^n == 2 (mod n*(n-1))).
Cf. A217466 (prime terms of the sequence).
Cf. A217465 (composite terms of the sequence)

Programs

  • Mathematica
    Select[Range[1, 10000], Mod[2^# - 2, # (# + 1)] == 0 &] (* T. D. Noe, Sep 19 2012 *)
    Join[{1},Select[Range[3000],PowerMod[2,#,#(#+1)]==2&]] (* Harvey P. Dale, Oct 05 2022 *)
  • PARI
    is(n)=Mod(2,n*(n+1))^n==2; \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    A216822_list = [n for n in range(1,10**6) if n == 1 or pow(2,n,n*(n+1)) == 2] # Chai Wah Wu, Mar 25 2021

Extensions

a(1)=1 prepended by Max Alekseyev, Dec 29 2017

A217468 Composite values of n such that 2^n == 2 (mod n*(n-1)).

Original entry on oeis.org

91625794219, 8796093022207, 1557609722332488343, 18216643597893471403
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

No other terms below 2^64.
The next term is <= 25790417485109157029391019 = A019320(258). - Emmanuel Vantieghem, Dec 01 2014
Terms A019320(k) belongs to this sequence for k in A297412. - Max Alekseyev, Dec 29 2017

Examples

			a(1) = 91625794219 = (2^38 - 2^19 + 1)/3 = A019320(114).
a(2) = 8796093022207 = 2^43 - 1 = A019320(43).
		

Crossrefs

Intersection of A001567 and { 2*A014945(k) + 1 }.

Programs

A211349 Primes p such that p-1 divides 2^p + 2.

Original entry on oeis.org

2, 3, 11, 251, 5051, 16811, 2025251, 8751251, 16607051, 28257611, 69005051, 78906251, 176775251, 210381251, 372175451, 550427051, 707025251, 854704451, 1866788051, 2441406251, 2605806251, 4249701251, 5469531251, 9304386251, 10315761251, 10915095251
Offset: 1

Views

Author

Philip A. Hoskins, Feb 06 2013

Keywords

Comments

Prime p>2 is in this sequence iff (p-1)/2 is in A015950. - Max Alekseyev, Dec 26 2017

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[2^# + 2, # - 1] == 0 &]
  • PARI
    N=10^9;
    default(primelimit,N);
    forprime(p=2,N, if (-2==Mod(2,p-1)^p, print1(p,", ")));
    /* Joerg Arndt, Feb 06 2013 */
    
  • Python
    from sympy import primerange
    A211349_list = [p for p in primerange(1,10**6) if p == 2 or pow(2,p,p-1) == p-3] # Chai Wah Wu, Mar 25 2021

Extensions

a(19)-a(47) from Giovanni Resta, Feb 10 2013
a(48)-a(177) from Max Alekseyev, Jan 06 2018

A211203 Prime numbers p such that p-1 divides (2^(p-1)+1)*(2^p-2).

Original entry on oeis.org

2, 3, 7, 11, 19, 31, 43, 79, 127, 151, 163, 211, 251, 271, 311, 331, 379, 487, 547, 631, 751, 811, 883, 991, 1051, 1171, 1231, 1459, 1471, 1831, 1951, 1999, 2251, 2311, 2531, 2647, 2731, 2791, 2971, 3079, 3331, 3511, 3631, 3691, 3823, 3943, 4051, 4447, 4651
Offset: 1

Views

Author

Philip A. Hoskins, Feb 06 2013

Keywords

Comments

This is also the set of primes such that n^(4^(p-1)) is congruent to n or -n modulo p.
Prime p>2 is in this sequence iff (p-1)/2 belongs to A014957. - Max Alekseyev, Dec 26 2017

Crossrefs

Cf. A069051 (primes p such that p - 1 divides 2^p - 2)
Cf. A211349 (primes p such that p - 1 divides 2^p + 2)

Programs

  • Maple
    A211203:=proc(q)
    local n;
    for n from 1 to q do
      if type((2^(2*ithprime(n)-1)-2)/(ithprime(n)-1),integer) then print(ithprime(n));
    fi; od; end:
    A211203(10000000); # Paolo P. Lava, Feb 18 2013
  • Mathematica
    Select[Prime[Range[1000]], Mod[1/2*(2^# + 2)*(2^# - 2), # - 1] == 0 &]
  • PARI
    is(p) = lift((Mod(2,p-1)^(p-1)+1)*(Mod(2,p-1)^p-2))==0 \\ David A. Corneth, Mar 25 2021
  • Python
    from sympy import primerange
    A211203_list = [p for p in primerange(1,10**6) if p == 2 or p == 3 or pow(2,2*p-1,p-1) == 2] # Chai Wah Wu, Mar 25 2021
    

A330382 Composite numbers k such that k-1 divides 2^k-2.

Original entry on oeis.org

55, 295, 343, 1027, 1135, 1315, 1807, 2059, 2395, 3403, 4375, 5335, 6175, 6499, 7183, 7939, 9235, 10207, 12643, 13123, 14155, 16003, 16255, 19495, 21547, 23815, 27595, 27703, 30619, 35479, 37927, 43219, 45487, 48007, 48763, 50275, 55567, 58483, 64387, 64639, 74899
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 12 2019

Keywords

Comments

If k is in this sequence, then 2^k-1 is also a term, so this sequence is infinite.
Also 2^p-1 is in this sequence for such prime p in A069051 that 2^p-1 is composite.
Theorem: if k-1 | 2^k-2, then m-1 | 2^m-2, where m = 2^k-1.
Conjecture: k-1 | 2^k-2 for k = (2^n-1)^3 if and only if n(n-1) | 2^n-2 for n > 2.
It seems that A007013(n)^3 for n > 1 and A007013(n) for n > 4 are in this sequence.
These are the composites k for which M - 1 divides 2^M - 2 where M = 2^k - 1. - Thomas Ordowski, Jul 01 2024

Crossrefs

A217468 is a subsequence.

Programs

  • Mathematica
    Select[Range[75000], CompositeQ[#] && Divisible[PowerMod[2, #, # - 1] - 2, # - 1] &]
  • PARI
    forcomposite(k=1,75000,if(!((2^k-2)%(k-1)),print1(k,", "))) \\ Hugo Pfoertner, Dec 12 2019

Formula

Composites of A014741(n) + 1. - Thomas Ordowski, Jul 01 2024

A350176 Numbers m such that binomial(m, 3) divides binomial(3^m-2, 3).

Original entry on oeis.org

3, 5, 7, 17, 79, 97, 257, 457, 65537, 677041, 1354081, 7812169, 13650001, 21381361, 65246161, 134246401, 242235841, 277032001, 393414001, 468930001, 793605121, 859560241, 886966081, 1609179001, 3355067041, 4269249601, 6024794161, 8120048641, 10142988241, 10466887201
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 18 2021

Keywords

Comments

Are all terms prime numbers?

Crossrefs

Supersequence of A019434.
Cf. A069051 (binomial(k,2) divides binomial(2^k-1, 2)?).

Programs

  • Magma
    [n: n in [3..10^4] |  IsZero(Binomial(3^n-2, 3) mod Binomial(n,3))];
    
  • Mathematica
    Select[Range[3, 10^5], Divisible[Binomial[3^# - 2, 3], Binomial[#, 3]] &] (* Amiram Eldar, Dec 18 2021 *)
  • PARI
    isok(m) = if (m>=3, (binomial(3^m-2, 3) % binomial(m, 3)) == 0); \\ Michel Marcus, Dec 19 2021
    
  • PARI
    isok(m) = if (m>2, my(md = Mod(3, m^3 - 3*m^2 + 2*m)^m); (md^3 - 9*md^2 + 26*md - 24) == 0); \\ Michel Marcus, Dec 28 2021
    
  • Python
    from itertools import count, islice
    def A350176_gen(startvalue=3): # generator of terms >= startvalue
        for m in count(max(startvalue,3)):
            k = m*(m-1)*(m-2)
            a = pow(3,m,k)-2
            if (a*(a-1)*(a-2))%k == 0:
                yield m
    A350176_list = list(islice(A350176_gen(),10)) # Chai Wah Wu, Jul 21 2025

Extensions

a(11)-a(20) from Michel Marcus, Dec 27 2021
a(21)-a(23) from Michel Marcus, Dec 28 2021
a(24)-a(30) from Chai Wah Wu, Jul 22 2025

A374841 Numbers k such that 2^(2^k-2) == 1 (mod k^2).

Original entry on oeis.org

3, 7, 19, 43, 73, 127, 163, 337, 341, 379, 487, 601, 881, 883, 937, 1387, 1459, 1801, 2593, 2647, 2857, 3079, 3529, 3673, 3943, 4057, 4201, 4681, 5419, 5461, 5881, 6121, 6481, 6529, 6553, 6571, 6841, 7481, 7993, 8233, 8911, 9001, 9199, 9241, 9721, 10261, 10657, 11161, 11827, 12241
Offset: 1

Views

Author

Thomas Ordowski, Jul 22 2024

Keywords

Comments

If p is an odd prime and 2^(2^p-2) == 1 (mod p), then 2^(2^p-2) == 1 (mod p^2).
If 2^(k-1) == 1 (mod k) and 2^(2^k-2) == 1 (mod k), then 2^(2^k-2) == 1 (mod k^2).
Composite terms that are not Fermat pseudoprimes to base 2 are 66709, 951481, ...
Note that 66709 = 19*3511 and 951481 = 271*3511, where 3511 is a Wieferich prime.

Examples

			3 is a term, because 3^2 divides 2^(2^3-2) - 1 = 2^6 - 1 = 63.
		

Crossrefs

Cf. A001220, A001567, A069051 (> 2 is a subsequence), A217468 (subsequence).

Programs

  • Mathematica
    Select[Range[12500], PowerMod[2, 2^# - 2, #^2] == 1 &] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    isok(k) = Mod(2, k^2)^(2^k-2) == 1; \\ Michel Marcus, Jan 05 2025

Extensions

More terms from Amiram Eldar Jul 22 2024

A297413 Numbers k such that 2^m == 2 (mod m*(m-1)), where m=A019320(k).

Original entry on oeis.org

2, 3, 6, 7, 14, 19, 38, 42, 43, 86, 114, 127, 163, 254, 258, 326, 379, 487, 758, 762, 883, 974, 978, 1459, 1766, 2274, 2647, 2918, 2922, 3079, 3943, 5294, 5298, 5419, 6158, 7886, 8754, 9199, 10838, 11827, 14407, 15882, 16759, 18398, 18474, 18523, 23654, 23658, 24967, 26407, 28814, 32514, 33518, 37046, 37339, 39367
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Comments

Also, numbers k such that A019320(k) belongs to A069051 or A217468.

Crossrefs

Contains A297412 as a subsequence.

Programs

  • PARI
    is_A297413(k) = my(m=polcyclo(k,2)); Mod(2,m*(m-1))^m==2;

A350402 Numbers k such that binomial(k, 2) divides binomial(2^k-2, 2).

Original entry on oeis.org

2, 3, 7, 11, 19, 31, 43, 127, 163, 211, 271, 311, 331, 379, 487, 571, 631, 811, 883, 991, 1459, 1471, 1747, 2311, 2531, 2647, 2791, 2971, 3079, 3631, 3943, 4091, 5171, 5419, 6571, 7591, 8863, 8911, 9199, 9791, 9931, 10891, 11827, 11971, 13591, 14407, 15391, 16759, 17011, 18523, 19531, 21871, 22111, 23431, 24967
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 29 2021

Keywords

Comments

Conjecture: aside from the first term, this is a subsequence of A094179 (numbers congruent to 3 mod 4 which are divisible only by primes congruent to 3 mod 4).
The conjecture is false: a(2295) = 508606771 = 19531 * 26041 is not in A094179, nor even A004614. - Charles R Greathouse IV, Jan 22 2022

Crossrefs

Supersequence of A069051.
Cf. A069051 (binomial(k,2) divides binomial(2^k-1, 2)?), A094179, A350176.

Programs

  • Magma
    [n: n in [2..25000] |  IsZero(Binomial(2^n-2, 2) mod Binomial(n, 2))];
    
  • Mathematica
    Select[Range[2, 25000], Divisible[Binomial[2^# - 2, 2], Binomial[#,2]] &] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    isok(n) = (n>1) && ((binomial(2^n-2, 2) % binomial(n, 2)) == 0); \\ Michel Marcus, Jan 04 2022
    
  • PARI
    is(n)=my(m=n^2-n,t=Mod(2,m)^n-2); t*(t-1)==0 \\ Charles R Greathouse IV, Jan 20 2022
Showing 1-10 of 11 results. Next