cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A069051 Primes p such that p-1 divides 2^p-2.

Original entry on oeis.org

2, 3, 7, 19, 43, 127, 163, 379, 487, 883, 1459, 2647, 3079, 3943, 5419, 9199, 11827, 14407, 16759, 18523, 24967, 26407, 37339, 39367, 42463, 71443, 77659, 95923, 99079, 113779, 117307, 143263, 174763, 175447, 184843, 265483, 304039, 308827
Offset: 1

Views

Author

Benoit Cloitre, Apr 03 2002

Keywords

Comments

These are the prime values of n such that 2^n == 2 (mod n*(n-1)). - V. Raman, Sep 17 2012
These are the prime values p such that n^(2^(p-1)) is congruent to n or -n (mod p) for all n in Z/pZ, the commutative ring associated with each term. This results follows from Fermat's little theorem. - Philip A. Hoskins, Feb 08 2013
A prime p is in this sequence iff p-1 belongs to A014741. For p>2, this is equivalent to (p-1)/2 belonging to A014945. - Max Alekseyev, Aug 31 2016
From Thomas Ordowski, Nov 20 2018: (Start)
Conjecture: if n-1 divides 2^n-2, then (2^n-2)/(n-1) is squarefree.
Numbers n such that b^n == b (mod (n-1)*n) for every integer b are 2, 3, 7, and 43; i.e., only prime numbers of the form A014117(k) + 1. (End)
These are primes p such that p^2 divides b^(2^p-2) - 1 for every b coprime to p. - Thomas Ordowski, Jul 01 2024

Crossrefs

a(n)-1 form subsequence of A014741; (a(n)-1)/2 for n>1 forms a subsequence of A014945.

Programs

  • GAP
    Filtered([1..350000],p->IsPrime(p) and (2^p-2) mod (p-1)=0); # Muniru A Asiru, Dec 03 2018
    
  • Magma
    [p : p in PrimesUpTo(310000) | IsZero((2^p-2) mod (p-1))]; // Vincenzo Librandi, Dec 03 2018
    
  • Mathematica
    Select[Prime[Range[10000]], Mod[2^# - 2, # - 1] == 0 &] (* T. D. Noe, Sep 19 2012 *)
    Join[{2,3},Select[Prime[Range[30000]],PowerMod[2,#,#-1]==2&]] (* Harvey P. Dale, Apr 17 2022 *)
  • PARI
    isA069051(p)=Mod(2,p-1)^p==2 && isprime(p); \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from sympy import prime
    for n in range(1,350000):
        if (2**prime(n)-2) % (prime(n)-1)==0:
            print(prime(n)) # Stefano Spezia, Dec 07 2018

Extensions

a(1) added by Charles R Greathouse IV, Sep 19 2012

A217465 Composite integers k such that 2^k == 2 (mod k*(k+1)).

Original entry on oeis.org

561, 1905, 4033, 4681, 5461, 6601, 8481, 11305, 13741, 13981, 16705, 23377, 30121, 31417, 41041, 49141, 52633, 57421, 88357, 88561, 101101, 107185, 121465, 130561, 162193, 196021, 196093, 204001, 208465, 219781, 266305, 276013, 278545, 282133, 285541, 314821, 334153, 341497, 390937, 399001
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

Terms A019320(k) belongs to this sequence for k in A297415. - Max Alekseyev, Dec 29 2017

Crossrefs

Subsequence of A216822.
Contains A303531 as a subsequence.

Programs

  • Mathematica
    Select[Range[400000],!PrimeQ[#]&&PowerMod[2,#,#(#+1)]==2&] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    for(n=1,10000,if((2^n)%(n*(n+1))==2&&isprime(n)==0,printf(n",")))
    
  • PARI
    forcomposite(n=4,10^6, if(Mod(2,n*(n+1))^n==2, print1(n", "))) \\ Charles R Greathouse IV, Aug 29 2024
    
  • Python
    from sympy import isprime
    A217465_list = [n for n in range(1,10**6) if pow(2,n,n*(n+1)) == 2 and not isprime(n)] # Chai Wah Wu, Mar 25 2021

A217468 Composite values of n such that 2^n == 2 (mod n*(n-1)).

Original entry on oeis.org

91625794219, 8796093022207, 1557609722332488343, 18216643597893471403
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

No other terms below 2^64.
The next term is <= 25790417485109157029391019 = A019320(258). - Emmanuel Vantieghem, Dec 01 2014
Terms A019320(k) belongs to this sequence for k in A297412. - Max Alekseyev, Dec 29 2017

Examples

			a(1) = 91625794219 = (2^38 - 2^19 + 1)/3 = A019320(114).
a(2) = 8796093022207 = 2^43 - 1 = A019320(43).
		

Crossrefs

Intersection of A001567 and { 2*A014945(k) + 1 }.

Programs

A217466 Primes p such that 2^p == 2 (mod p*(p+1)).

Original entry on oeis.org

5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

Primes in A216822.

Crossrefs

Cf. A216822.

Programs

  • Mathematica
    Select[Prime[Range[500]],PowerMod[2,#,#(#+1)]==2&] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    for(n=1,10000,if((2^n)%(n*(n+1))==2&&isprime(n),printf(n",")))
    
  • Python
    from sympy import primerange
    A217466_list = [p for p in primerange(1,10**6) if pow(2,p,p*(p+1)) == 2] # Chai Wah Wu, Mar 25 2021

A219037 Numbers k such that k divides 2^k + 2 and (k-1) divides 2^k + 1.

Original entry on oeis.org

2, 6, 66, 73786976294838206466
Offset: 1

Views

Author

Max Alekseyev, Nov 10 2012

Keywords

Comments

Also, numbers k such that 2^k == k-2 (mod k*(k-1)).
The sequence is infinite: if m is in this sequence, then so is 2^m + 2.
No other terms below 10^20.

References

  • W. Sierpinski, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #18.

Crossrefs

Intersection of A006517 and A055685.

Formula

Conjecture: a(n+1) = 2^a(n) + 2 for all n.

A303531 Numbers k such that both k and (k+1)/2 are Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

31417, 130561, 41541241, 208969201, 224074369, 392099401, 851934601, 5186365801, 33847795741, 65096562721, 91625968981, 104070261901, 111794455501, 165814673473, 180007280041, 184020124201, 276032114281, 408164260141, 620052300421, 1240013784241, 1244667503017
Offset: 1

Views

Author

Max Alekseyev, Apr 25 2018

Keywords

Comments

Numbers (k+1)/2 are listed in A298758.

Crossrefs

Subsequence of each of A001567, A216822, and A217465.

Programs

  • Mathematica
    Select[Cases[Import["https://oeis.org/A001567/b001567.txt", "Table"], {, }][[;; , 2]], !PrimeQ[(#+1)/2] && PowerMod[2, (#-1)/2, (#+1)/2] == 1 &] (* Amiram Eldar, Nov 09 2023 *)
  • PARI
    isF(n) = {Mod(2, n)^n==2 && !isprime(n) && n>1};
    isok(n) = (n%2) && isF(n) && isF((n+1)/2); \\ Michel Marcus, Apr 26 2018

Formula

a(n) = 2*A298758(n) - 1.

A297414 Numbers k such that 2^m == 2 (mod m*(m+1)), where m = A019320(k).

Original entry on oeis.org

1, 4, 9, 12, 25, 36, 40, 52, 80, 92, 124, 150, 208, 306, 361, 630, 656, 1648, 1780, 2508, 3300, 3540, 5728, 6260, 6450, 7500, 10820, 12656, 14076, 14132, 18836, 20960, 23456, 24272, 35280, 43136
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Comments

Also, numbers k such that A019320(k) belongs to A216822.

Crossrefs

Programs

  • PARI
    is_A297414(k) = my(m=polcyclo(k, 2)); Mod(2, m*(m+1))^m==2;

A375792 Numbers k such that 2^k == 2 (mod k-th triangular number) and not 2^k == 2 (mod k-th oblong number).

Original entry on oeis.org

3, 11, 131, 4091, 5851, 17291, 283051, 289771, 346963, 1008547, 1082971, 3424651, 3919771, 6464611, 6852691, 7298131, 7514851, 8733691, 12752251, 16740371, 17227891, 19895611, 27393211, 30281371, 33875323, 40528531, 45744931, 68174107, 81011971, 98940403
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2024

Keywords

Comments

Conjecture: all terms of the sequence are prime numbers A000040.
The conjecture is false: 45812984491 = 1777 * 25781083 is in the sequence. - Charles R Greathouse IV, Aug 29 2024

Crossrefs

Cf. A000217 (triangular numbers), A002378 (oblong numbers), A216822 (n such that 2^n == 2 (mod n*(n+1))), A375793 (n such that 2^n == 2 (mod n*(n+1) div 2)), A217465.

Programs

  • Magma
    [n: n in [1..10^5] | 2^n mod (n*(n+1) div 2) eq 2 and not 2^n mod (n*(n+1)) eq 2];
    
  • PARI
    is(n)=my(m=n*(n+1)); Mod(2,m)^n==m/2+2 \\ Charles R Greathouse IV, Aug 29 2024

Extensions

a(19)-a(30) from Charles R Greathouse IV, Aug 29 2024

A375793 Numbers m such that 2^m == 2 (mod m-th triangular number).

Original entry on oeis.org

1, 3, 5, 11, 13, 29, 37, 61, 73, 131, 157, 181, 193, 277, 313, 397, 421, 457, 541, 561, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1905, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253, 3313, 3389, 3457
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2024

Keywords

Comments

a(19) = 561 is the first composite term of the sequence.

Crossrefs

Supersequence of A216822, A217465, A217466 and A375792.

Programs

  • Magma
    [1] cat [m: m in [2..3500] | Modexp(2, m, m*(m+1) div 2) eq 2];
  • Maple
    t:= n-> n*(n+1)/2:
    q:= m-> is(2&^m-2 mod t(m)=0):
    select(q, [$1..3457])[];  # Alois P. Heinz, Sep 21 2024
  • Mathematica
    Select[Range[3457],Mod[2^#-2,#(#+1)/2 ]==0&] (* James C. McMahon, Sep 23 2024 *)
Showing 1-9 of 9 results.