cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A297415 Numbers k such that A019320(k) is in A217465.

Original entry on oeis.org

25, 36, 52, 92, 124, 306, 361, 630, 656, 1648, 1780, 2508, 3300, 3540, 5728, 6260, 6450, 7500, 10820, 12656, 14076, 14132, 18836, 20960, 23456, 24272, 35280, 43136
Offset: 1

Views

Author

Max Alekseyev, Dec 29 2017

Keywords

Crossrefs

Set difference of A297414 and ({1} U A072226).

Programs

  • PARI
    is_A297415(n) = my(m=polcyclo(n, 2)); (m>1) && Mod(2, m*(m+1))^m==2 && !ispseudoprime(m);

A216822 Numbers n such that 2^n == 2 (mod n*(n+1)).

Original entry on oeis.org

1, 5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 561, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1905, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917
Offset: 1

Views

Author

V. Raman, Sep 17 2012

Keywords

Comments

a(17) = 561 is the first composite number in the sequence. - Charles R Greathouse IV, Sep 19 2012
Intersection of { A015919(n) } and { A192109(n)-1 }. - Max Alekseyev, Apr 22 2013

Crossrefs

Cf. A069051 (prime n such that 2^n == 2 (mod n*(n-1))).
Cf. A217466 (prime terms of the sequence).
Cf. A217465 (composite terms of the sequence)

Programs

  • Mathematica
    Select[Range[1, 10000], Mod[2^# - 2, # (# + 1)] == 0 &] (* T. D. Noe, Sep 19 2012 *)
    Join[{1},Select[Range[3000],PowerMod[2,#,#(#+1)]==2&]] (* Harvey P. Dale, Oct 05 2022 *)
  • PARI
    is(n)=Mod(2,n*(n+1))^n==2; \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    A216822_list = [n for n in range(1,10**6) if n == 1 or pow(2,n,n*(n+1)) == 2] # Chai Wah Wu, Mar 25 2021

Extensions

a(1)=1 prepended by Max Alekseyev, Dec 29 2017

A217468 Composite values of n such that 2^n == 2 (mod n*(n-1)).

Original entry on oeis.org

91625794219, 8796093022207, 1557609722332488343, 18216643597893471403
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

No other terms below 2^64.
The next term is <= 25790417485109157029391019 = A019320(258). - Emmanuel Vantieghem, Dec 01 2014
Terms A019320(k) belongs to this sequence for k in A297412. - Max Alekseyev, Dec 29 2017

Examples

			a(1) = 91625794219 = (2^38 - 2^19 + 1)/3 = A019320(114).
a(2) = 8796093022207 = 2^43 - 1 = A019320(43).
		

Crossrefs

Intersection of A001567 and { 2*A014945(k) + 1 }.

Programs

A298758 Numbers k such that both k and 2k-1 are Poulet numbers (Fermat pseudoprimes to base 2).

Original entry on oeis.org

15709, 65281, 20770621, 104484601, 112037185, 196049701, 425967301, 2593182901, 16923897871, 32548281361, 45812984491, 52035130951, 55897227751, 82907336737, 90003640021, 92010062101, 138016057141, 204082130071, 310026150211, 620006892121, 622333751509
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

2*a(n) - 1 = A303531(n) belongs to A217465. - Max Alekseyev, Apr 24 2018
Numbers k such that both k and 2k+1 are Poulet numbers are listed in A303447.
If p is a prime such that 2*p-1 is also a prime (A005382) and k = (2^(2*p-1)+1)/3 and 2*k-1 are both composites, then k is a term of this sequence (Rotkiewicz, 2000). - Amiram Eldar, Nov 09 2023

Crossrefs

Subsequence of A001567.

Programs

  • Mathematica
    s = Import["b001567.txt", "Data"][[All, -1]]; n = Length[s];
    aQ[n_] := ! PrimeQ[n] && PowerMod[2, (n - 1), n] == 1;
    a = {}; Do[p = 2*s[[k]] - 1; If[aQ[p], AppendTo[a, s[[k]]]], {k, 1, n}]; a (* using the b-File from A001567 *)
  • PARI
    isP(n) = (Mod(2, n)^n==2) && !isprime(n) && (n>1);
    isok(n) = isP(n) && isP(2*n-1); \\ Michel Marcus, Mar 09 2018

A303531 Numbers k such that both k and (k+1)/2 are Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

31417, 130561, 41541241, 208969201, 224074369, 392099401, 851934601, 5186365801, 33847795741, 65096562721, 91625968981, 104070261901, 111794455501, 165814673473, 180007280041, 184020124201, 276032114281, 408164260141, 620052300421, 1240013784241, 1244667503017
Offset: 1

Views

Author

Max Alekseyev, Apr 25 2018

Keywords

Comments

Numbers (k+1)/2 are listed in A298758.

Crossrefs

Subsequence of each of A001567, A216822, and A217465.

Programs

  • Mathematica
    Select[Cases[Import["https://oeis.org/A001567/b001567.txt", "Table"], {, }][[;; , 2]], !PrimeQ[(#+1)/2] && PowerMod[2, (#-1)/2, (#+1)/2] == 1 &] (* Amiram Eldar, Nov 09 2023 *)
  • PARI
    isF(n) = {Mod(2, n)^n==2 && !isprime(n) && n>1};
    isok(n) = (n%2) && isF(n) && isF((n+1)/2); \\ Michel Marcus, Apr 26 2018

Formula

a(n) = 2*A298758(n) - 1.

A375792 Numbers k such that 2^k == 2 (mod k-th triangular number) and not 2^k == 2 (mod k-th oblong number).

Original entry on oeis.org

3, 11, 131, 4091, 5851, 17291, 283051, 289771, 346963, 1008547, 1082971, 3424651, 3919771, 6464611, 6852691, 7298131, 7514851, 8733691, 12752251, 16740371, 17227891, 19895611, 27393211, 30281371, 33875323, 40528531, 45744931, 68174107, 81011971, 98940403
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2024

Keywords

Comments

Conjecture: all terms of the sequence are prime numbers A000040.
The conjecture is false: 45812984491 = 1777 * 25781083 is in the sequence. - Charles R Greathouse IV, Aug 29 2024

Crossrefs

Cf. A000217 (triangular numbers), A002378 (oblong numbers), A216822 (n such that 2^n == 2 (mod n*(n+1))), A375793 (n such that 2^n == 2 (mod n*(n+1) div 2)), A217465.

Programs

  • Magma
    [n: n in [1..10^5] | 2^n mod (n*(n+1) div 2) eq 2 and not 2^n mod (n*(n+1)) eq 2];
    
  • PARI
    is(n)=my(m=n*(n+1)); Mod(2,m)^n==m/2+2 \\ Charles R Greathouse IV, Aug 29 2024

Extensions

a(19)-a(30) from Charles R Greathouse IV, Aug 29 2024

A375793 Numbers m such that 2^m == 2 (mod m-th triangular number).

Original entry on oeis.org

1, 3, 5, 11, 13, 29, 37, 61, 73, 131, 157, 181, 193, 277, 313, 397, 421, 457, 541, 561, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1905, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253, 3313, 3389, 3457
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 29 2024

Keywords

Comments

a(19) = 561 is the first composite term of the sequence.

Crossrefs

Supersequence of A216822, A217465, A217466 and A375792.

Programs

  • Magma
    [1] cat [m: m in [2..3500] | Modexp(2, m, m*(m+1) div 2) eq 2];
  • Maple
    t:= n-> n*(n+1)/2:
    q:= m-> is(2&^m-2 mod t(m)=0):
    select(q, [$1..3457])[];  # Alois P. Heinz, Sep 21 2024
  • Mathematica
    Select[Range[3457],Mod[2^#-2,#(#+1)/2 ]==0&] (* James C. McMahon, Sep 23 2024 *)
Showing 1-7 of 7 results.