cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217465 Composite integers k such that 2^k == 2 (mod k*(k+1)).

Original entry on oeis.org

561, 1905, 4033, 4681, 5461, 6601, 8481, 11305, 13741, 13981, 16705, 23377, 30121, 31417, 41041, 49141, 52633, 57421, 88357, 88561, 101101, 107185, 121465, 130561, 162193, 196021, 196093, 204001, 208465, 219781, 266305, 276013, 278545, 282133, 285541, 314821, 334153, 341497, 390937, 399001
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

Terms A019320(k) belongs to this sequence for k in A297415. - Max Alekseyev, Dec 29 2017

Crossrefs

Subsequence of A216822.
Contains A303531 as a subsequence.

Programs

  • Mathematica
    Select[Range[400000],!PrimeQ[#]&&PowerMod[2,#,#(#+1)]==2&] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    for(n=1,10000,if((2^n)%(n*(n+1))==2&&isprime(n)==0,printf(n",")))
    
  • PARI
    forcomposite(n=4,10^6, if(Mod(2,n*(n+1))^n==2, print1(n", "))) \\ Charles R Greathouse IV, Aug 29 2024
    
  • Python
    from sympy import isprime
    A217465_list = [n for n in range(1,10**6) if pow(2,n,n*(n+1)) == 2 and not isprime(n)] # Chai Wah Wu, Mar 25 2021

A303448 Numbers m such that both m and (m-1)/2 are Fermat pseudoprimes base 2 (A001567).

Original entry on oeis.org

19781763, 46912496118443, 192153584101141163
Offset: 1

Views

Author

Max Alekseyev, Apr 24 2018

Keywords

Comments

No other terms below 2^65.
Terms a(2) and a(3) are of the form (2^(2k+1)+1)/3 = A007583(k).
Terms A007583(k) belong to this sequence for k in A303009. Correspondingly, a(4) <= A007583(A303009(3)) = (2^83+1)/3 = 3223802185639011132549803.
If a(n) is not divisible by 3, then it also belongs to A175625.

Crossrefs

Numbers (a(n)-1)/2 are listed in A303447.
Subsequence of A006970 and A300193.

Formula

a(n) = 2*A303447(n) + 1.

Extensions

a(1) from Amiram Eldar, Jan 26 2018

A303447 Numbers m such that both m and 2m+1 are Fermat pseudoprimes base 2 (A001567).

Original entry on oeis.org

9890881, 23456248059221, 96076792050570581
Offset: 1

Views

Author

Max Alekseyev, Apr 24 2018

Keywords

Comments

No other terms below 2^64.
Terms a(2) and a(3) are of the form (4^k-1)/3=A002450(k). Terms A002450(k) belong to this sequence for k in A303009. Correspondingly, a(4) <= A002450(A303009(3)) = (4^41-1)/3 = 1611901092819505566274901.

Crossrefs

Numbers 2*a(n)+1 are listed in A303448.
Subsequence of A006970.

Extensions

a(1) from Amiram Eldar, Jan 26 2018

A303531 Numbers k such that both k and (k+1)/2 are Fermat pseudoprimes to base 2 (A001567).

Original entry on oeis.org

31417, 130561, 41541241, 208969201, 224074369, 392099401, 851934601, 5186365801, 33847795741, 65096562721, 91625968981, 104070261901, 111794455501, 165814673473, 180007280041, 184020124201, 276032114281, 408164260141, 620052300421, 1240013784241, 1244667503017
Offset: 1

Views

Author

Max Alekseyev, Apr 25 2018

Keywords

Comments

Numbers (k+1)/2 are listed in A298758.

Crossrefs

Subsequence of each of A001567, A216822, and A217465.

Programs

  • Mathematica
    Select[Cases[Import["https://oeis.org/A001567/b001567.txt", "Table"], {, }][[;; , 2]], !PrimeQ[(#+1)/2] && PowerMod[2, (#-1)/2, (#+1)/2] == 1 &] (* Amiram Eldar, Nov 09 2023 *)
  • PARI
    isF(n) = {Mod(2, n)^n==2 && !isprime(n) && n>1};
    isok(n) = (n%2) && isF(n) && isF((n+1)/2); \\ Michel Marcus, Apr 26 2018

Formula

a(n) = 2*A298758(n) - 1.
Showing 1-4 of 4 results.