A127101
Numbers k such that k^2 divides 9^k - 1.
Original entry on oeis.org
1, 2, 4, 8, 10, 20, 40, 110, 136, 164, 220, 328, 440, 610, 680, 820, 1210, 1220, 1544, 1640, 2420, 2440, 2530, 4840, 5060, 5576, 6710, 7370, 7480, 7720, 9020, 10120, 11810, 13420, 13612, 14008, 14740, 18040, 18632, 19580
Offset: 1
Subset of
A068382 (numbers k such that k divides 9^k - 1).
-
Select[Range[20000], IntegerQ[(PowerMod[9, #, #^2 ]-1)/#^2 ]&]
-
is(k) = Mod(9, k^2)^k == 1; \\ Amiram Eldar, May 21 2024
A177909
Numbers k such that k^3 divides 9^(k^2) - 1.
Original entry on oeis.org
1, 2, 4, 8, 10, 20, 40, 68, 82, 110, 136, 164, 220, 328, 340, 410, 440, 610, 680, 772, 820, 1010, 1210, 1220, 1510, 1544, 1640, 2020, 2420, 2440, 2530, 2788, 3020, 3740, 3860, 4040, 4510, 4840, 5060, 5576, 6040, 6710, 6806, 7004, 7370, 7480, 7720, 8020, 9020
Offset: 1
9^(2^2) - 1 = 6560, which is divisible by 2^3, so 2 is in the sequence.
9^(4^2) - 1 = 1853020188851840, which is divisible by 4^3, so 4 is in the sequence.
9^(6^2) - 1 = 22528399544939174411840147874772640, which is not divisible by 6, and certainly not by 6^3, so 6 is not in the sequence.
A014960
Integers n such that n divides 24^n - 1.
Original entry on oeis.org
1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1
Prime factors are listed in
A087807.
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014959 (b=22).
-
s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)
Edited and terms a(13) onward added by
Max Alekseyev, Nov 16 2019
A014956
Positive integers k such that k divides 14^k - 1.
Original entry on oeis.org
1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A128360.
-
Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)
A014957
Positive integers k that divide 16^k - 1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A014956,
A177805,
A177807,
A128358,
A128360
-
Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
-
A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021
A068383
Numbers k such that k divides 11^k - 1.
Original entry on oeis.org
1, 2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 24, 25, 30, 32, 36, 40, 42, 48, 50, 54, 60, 64, 72, 80, 84, 90, 96, 100, 108, 114, 120, 125, 126, 128, 144, 150, 156, 160, 162, 168, 180, 192, 200, 210, 216, 222, 228, 240, 244, 250, 252, 256, 270, 272, 288, 294, 300, 312, 320
Offset: 1
11^5 - 1 = 161050, which is divisible by 5, so 5 is in the sequence.
11^6 - 1 = 1771560, which is divisible by 6, so 6 is in the sequence.
11^7 = 19487171 = 4 modulo 7, so 7 is not in the sequence.
-
Join[{1}, Select[Range[500], PowerMod[11, #, #] == 1 &]] (* Robert Price, Apr 04 2020 *)
-
isok(n) = Mod(11, n)^n == Mod(1, n); \\ Michel Marcus, May 06 2016
-
def powerMod(a: Int, b: Int, m: Int): Int = b match { case 1 => a % m; case n => a * powerMod(a, n - 1, m) % m }
List(1) ++: (2 to 500).filter(k => powerMod(11, k, k) == 1) // Alonso del Arte, Apr 04 2020
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
A014959
Integers k such that k divides 22^k - 1.
Original entry on oeis.org
1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014960 (b=24).
-
nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)
A115976
Numbers k that divide 2^(k-2) + 1.
Original entry on oeis.org
1, 3, 49737, 717027, 9723611, 21335267, 32390921, 38999627, 43091897, 86071337, 101848553, 102361457, 228911411, 302948067, 370219467, 393664027, 455781089, 483464027, 1040406177, 1272206987, 2371678553, 2571052241, 2648052857, 3054713937, 3597613307, 3782971499, 3917903851, 4005163577, 5419912241
Offset: 1
Cf.
A006521,
A006517,
A069927,
A067945,
A067946,
A067947,
A068382,
A068383,
A014945,
A014946,
A014949,
A092028.
-
lst = {}; Do[ If[ PowerMod[2, 2n - 3, 2n - 1] == 2n - 2, AppendTo[lst, 2n - 1]], {n, 10^9}]; lst (* Robert G. Wilson v, Apr 04 2006 *)
Showing 1-9 of 9 results.
Comments