cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A127106 Numbers k such that k^2 divides 6^k-1.

Original entry on oeis.org

1, 5, 1555, 9673655, 187159211791705, 776119592182705
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subsequence of A014946.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[6, #, #^2 ]-1)/#^2 ]&]

Extensions

Two more terms from Max Alekseyev, May 05 2010

A127102 Numbers k such that k^2 divides 8^k-1.

Original entry on oeis.org

1, 7, 889, 2359, 299593, 2033143, 13549249, 42931441, 100170217, 310935751, 685169191, 3606045247, 4566096913, 5452293007, 6620620783, 12721617559, 30987132463, 65576560063, 92349997537, 104785348087, 457967746369
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007, Jan 07 2007

Keywords

Comments

Subsequence of A014949.
a(5) = 299593 = (8^7-1)/7 is a repunit in base 8, 1111111(base 8). The first 5 listed terms of a(n) are terms of the finite sequence A003530: divisors of 8^7-1. [Corrected and edited by M. F. Hasler, Nov 21 2018]
Also a subsequence of A177908, see there for more comments on properties of terms of this sequence. - M. F. Hasler, Nov 21 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[8, #, #^2 ]-1)/#^2 ]&]
  • PARI
    is(n)=Mod(8,n^2)^n==1 \\ M. F. Hasler, Nov 21 2018

Extensions

More terms from Ryan Propper, Jan 05 2007
Terms a(12) onward from Max Alekseyev, May 06 2010

A127092 Numbers k such that k^2 divides 11^k - 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 12, 20, 30, 42, 60, 84, 114, 156, 210, 222, 228, 244, 420, 444, 570, 732, 780, 798, 930, 1092, 1110, 1140, 1220, 1554, 1596, 1806, 1860, 2220, 2436, 2964, 3108, 3612, 3660, 3990, 4218, 5124, 5460, 5772, 6510, 7770, 7980, 8268, 8436, 9030
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subsequence of A068383.

Crossrefs

Programs

  • Mathematica
    Select[Range[15000], IntegerQ[(PowerMod[11, #, #^2 ]-1)/#^2 ]&]
    Join[{1},Select[Range[9100],PowerMod[11,#,#^2]==1&]] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    for(k=1, 1e4, if(Mod(11, k^2)^k==1, print1(k", "))) \\ Seiichi Manyama, Mar 25 2020

A127101 Numbers k such that k^2 divides 9^k - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 40, 110, 136, 164, 220, 328, 440, 610, 680, 820, 1210, 1220, 1544, 1640, 2420, 2440, 2530, 4840, 5060, 5576, 6710, 7370, 7480, 7720, 9020, 10120, 11810, 13420, 13612, 14008, 14740, 18040, 18632, 19580
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Crossrefs

Subset of A068382 (numbers k such that k divides 9^k - 1).

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[9, #, #^2 ]-1)/#^2 ]&]
  • PARI
    is(k) = Mod(9, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

A127105 Numbers k such that k^2 divides 5^k-1.

Original entry on oeis.org

1, 2, 4, 6, 12, 42, 52, 84, 156, 186, 372, 1092, 1218, 1302, 1806, 2436, 2604, 2756, 3612, 4836, 5334, 7212, 8268, 10668, 12324, 15918, 18858, 24492, 31668, 31836, 33852, 37716, 37758, 46956, 50484, 52374, 55986, 57876, 71862, 75516, 86268
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subset of A067946 (numbers k such that k divides 5^k-1).

Crossrefs

Cf. A067946 (numbers k such that k divides 5^k-1).

Programs

  • Maple
    select(t -> (5 &^t - 1) mod (t^2) = 0, [$1..10^5]); # Robert Israel, Jul 15 2018
  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[5, #, #^2 ]-1)/#^2 ]&]
  • PARI
    isok(n) = Mod(5, n^2)^n == 1; \\ Michel Marcus, Apr 23 2017

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007

A127107 Numbers n such that n^2 divides 7^n-1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 20, 24, 40, 57, 60, 100, 114, 120, 156, 200, 220, 228, 258, 300, 312, 440, 456, 516, 600, 660, 780, 1032, 1100, 1140, 1320, 1560, 1640, 1752, 1860, 2172, 2200, 2280, 2580, 2964, 3300, 3660, 3720, 3820, 3900, 4344, 4632, 4902, 4920, 5060
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Crossrefs

Cf. A127100, A127101, A127102, A127103, A123104, A127105, A127106, A127092. Cf. A067947 = numbers n such that n divides 7^n-1.

Programs

  • Mathematica
    Select[Range[10000], IntegerQ[(PowerMod[7, #, #^2 ]-1)/#^2 ]&]

A014950 Numbers m such that m divides 10^m - 1.

Original entry on oeis.org

1, 3, 9, 27, 81, 111, 243, 333, 729, 999, 2187, 2997, 4107, 6561, 8991, 12321, 13203, 19683, 20439, 26973, 36963, 39609, 59049, 61317, 80919, 110889, 118827, 151959, 177147, 183951, 242757, 332667, 356481, 455877, 488511, 531441, 551853, 728271
Offset: 1

Views

Author

Keywords

Comments

Also, m such that m | R(m) = A002275(m). - Lekraj Beedassy, Mar 25 2005
For n > 1, 3 divides a(n). If m is in the sequence and d divides m then for each positive integer k, d^k*m is in the sequence. So if m is in the sequence then m^k is in the sequence for each positive integer k. In particular, 3^k is in this sequence for all k. - Farideh Firoozbakht, Apr 14 2010
Numbers m such that m divides s(m), where s(1) = 1, s(k) = s(k-1) + k*10^(k-1).
Number of terms <= 10^k, beginning with k = 0: 1, 3, 5, 10, 15, 25, 41, 68, 108, 178, 291, ... - Robert G. Wilson v, Nov 30 2013
Numbers m such that m divides A033713(m). - Hans Havermann, Jan 25 2014

References

  • J. D. E. Konhauser et al., Which Way Did The Bicycle Go? Problem 80 pp. 26; 133, Dolciani Math. Exp., No. 18, MAA, Washington DC, 1996.

Crossrefs

Programs

Formula

Solutions to 10^m == 1 (mod m). - Vladeta Jovovic

Extensions

More terms from Vladeta Jovovic, Dec 18 2001
More terms from Larry Reeves (larryr(AT)acm.org), Jan 06 2005
Edited by Max Alekseyev, May 20 2011

A127103 Numbers k such that k^2 divides 3^k-1.

Original entry on oeis.org

1, 2, 4, 20, 220, 1220, 2420, 5060, 13420, 14740, 23620, 55660, 145420, 147620, 162140, 237820, 259820, 290620, 308660, 339020, 447740, 847220, 899140, 1210220, 1440820, 1599620, 1759340, 2332660, 2616020, 2858020, 3196820, 3344660
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

From Alexander Adamchuk, Jan 11 2007: (Start)
2 divides a(n) for n>1. 2^2 divides a(n) for n>2. 5 divides a(n) for n>3.
11 divides a(n) for n = {5,7,8,9,10,12,13,14,15,16,17,18,19,20,22,23,24,26,27, 28,29,30,31,31,33,34,35,...}.
11^2 divides a(n) for n = {7,12,14,15,26,27,29,30,31,33,34,...}.
Prime factors of a(n) in order of their appearance in a(n) are {2,5,11,61,23,67,1181,661,47,1321,367,3851,5501,727,461,269,...}. (End)

Crossrefs

Subset of A067945 (numbers k that divide 3^k - 1).

Programs

  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[3, #, #^2 ]-1)/#^2 ]&]
    Join[{1},Select[Range[335*10^4],PowerMod[3,#,#^2]==1&]] (* Harvey P. Dale, Oct 02 2019 *)
  • PARI
    is(k) = Mod(3, k^2)^k == 1; \\ Amiram Eldar, May 21 2024

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007

A127104 Numbers k such that k^2 divides 4^k-1.

Original entry on oeis.org

1, 3, 21, 903, 2667, 7077, 113799, 114681, 304311, 389193, 898779, 932799, 4893357, 6099429, 8131683, 8776257, 14452473, 38350263, 38647497, 40647747, 49427511, 99583113, 118465473, 128794323, 131158041, 152643813, 262275447, 300510651, 314353263, 335873559, 349662369
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

From Alexander Adamchuk, Jan 11 2007: (Start)
3 divides a(n) for n > 1.
7 divides a(n) for n > 2.
43 divides a(n) for n = {4, 8, 9, 10, 12, 13, 16, ...}.
127 divides a(n) for n = {5, 8, 11, 14, 15, 17, ...}.
Prime factors of a(n) in order of their appearance in {a(n)} are {3, 7, 43, 127, 337, 5419, 431, 1033, 5419, 2287, 3049, 9719, ...}. (End)

Crossrefs

Subset of A014945 (numbers k such that k divides 4^nk-1).

Programs

  • Mathematica
    Select[Range[30000], IntegerQ[(PowerMod[4, #, #^2 ]-1)/#^2 ]&]
  • PARI
    is(k) = Mod(4, k^2)^k == 1; \\ Amiram Eldar, May 25 2024

Extensions

More terms from Ryan Propper and Alexander Adamchuk, Jan 05 2007
a(27)-a(31) from Amiram Eldar, May 25 2024

A128393 Numbers k such that k^2 divides 13^k - 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 14, 20, 28, 42, 60, 68, 84, 140, 183, 204, 220, 340, 366, 406, 420, 476, 660, 732, 812, 942, 1020, 1218, 1428, 1540, 1806, 1860, 1884, 2380, 2436, 2562, 3612, 3660, 3740, 4060, 4620, 5060, 5124, 6594, 7004, 7140, 8420, 9420, 9940, 11220
Offset: 1

Views

Author

Alexander Adamchuk, Mar 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[12000],PowerMod[13,#,#^2]==1&]] (* Harvey P. Dale, Sep 05 2012 *)
Showing 1-10 of 30 results. Next