cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A015030 q-Catalan numbers (binomial version) for q=2.

Original entry on oeis.org

1, 1, 5, 93, 6477, 1733677, 1816333805, 7526310334829, 124031223014725741, 8152285307423733458541, 2140200604371078953284092525, 2245805993494514875022552272042605, 9423041917569791458584837551185555483245, 158121354267437848361217045222877873550507035245
Offset: 0

Views

Author

Keywords

Crossrefs

q-Catalan numbers for q = 3..12 and q = -2..-11: A015033 - A015035, A015037 - A015042, A015055 - A015058, A015060 - A015062, A015072, A015077 - A015079.

Programs

  • Magma
    q:=2; [1] cat [((1-q)/(1-q^(n+1)))*(&*[(1-q^(2*n-k))/(1-q^(k+1)): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2018
    
  • Mathematica
    Table[QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    q=2; for(n=0, 20, print1(((1-q)/(1-q^(n+1)))*prod(k=0,n-1, (1-q^(2*n-k))/(1-q^(k+1))), ", ")) \\ G. C. Greubel, Nov 11 2018
    
  • Sage
    from sage.combinat.q_analogues import q_catalan_number
    [q_catalan_number(n, 2) for n in range(20)] # G. C. Greubel, Nov 21 2018

Formula

a(n) = binomial(2*n, n, q)/(n+1)_q, where binomial(n,m,q) is the q-binomial coefficient, with q=2.
a(n) = ((1-q)/(1-q^(n+1)))*Product_{k=0..(n-1)} (1-q^(2*n-k))/(1-q^(k+1)), with q=2. - G. C. Greubel, Nov 11 2018
a(n) ~ c * 2^(n^2-n-1), where c = 3.462746619455... = A065446. - Vladimir Reshetnikov, Sep 26 2021
a(n) = (-1)^n * A136097(n). - Michael Somos, Jan 10 2023
a(n) = Product_{1 <= i <= j <= n-1} (2^(i+j+2) - 1)/(2^(i+j) - 1). - Peter Bala, Feb 24 2023

A384437 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 5, 1, 1, 1, 10, 93, 14, 1, 1, 1, 17, 847, 6477, 42, 1, 1, 1, 26, 4433, 627382, 1733677, 132, 1, 1, 1, 37, 16401, 18245201, 4138659802, 1816333805, 429, 1, 1, 1, 50, 48205, 256754526, 1197172898385, 244829520301060, 7526310334829, 1430, 1
Offset: 0

Views

Author

Seiichi Manyama, May 29 2025

Keywords

Examples

			Square array begins:
  1,  1,       1,          1,             1,               1, ...
  1,  1,       1,          1,             1,               1, ...
  1,  2,       5,         10,            17,              26, ...
  1,  5,      93,        847,          4433,           16401, ...
  1, 14,    6477,     627382,      18245201,       256754526, ...
  1, 42, 1733677, 4138659802, 1197172898385, 100333200992026, ...
		

Crossrefs

Main diagonal gives A384282.

Programs

  • PARI
    a(n, k) = if(k==1, binomial(2*n, n)/(n+1), (1-k)/(1-k^(n+1))*prod(j=0, n-1, (1-k^(2*n-j))/(1-k^(j+1))));
    
  • Sage
    from sage.combinat.q_analogues import q_catalan_number
    def a(n, k): return q_catalan_number(n, k)

Formula

A(n,k) = q_binomial(2*n, n, k)/q_binomial(n+1, 1, k).
Showing 1-2 of 2 results.