cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015224 Even pentagonal pyramidal numbers.

Original entry on oeis.org

0, 6, 18, 40, 126, 196, 288, 550, 726, 936, 1470, 1800, 2176, 3078, 3610, 4200, 5566, 6348, 7200, 9126, 10206, 11368, 13950, 15376, 16896, 20230, 22050, 23976, 28158, 30420, 32800, 37926, 40678, 43560, 49726, 53016, 56448, 63750, 67626, 71656
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))); // G. C. Greubel, Aug 24 2018
  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,6,18,40,126,196,288,550, 726,936},40] (* Ant King, Oct 19 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(2*x*(3+6*x+11*x^2+34*x^3 +17*x^4 +13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))) \\ G. C. Greubel, Aug 24 2018
    

Formula

From Ant King, Oct 24 2012: (Start)
a(n) = a(n-1) +3*a(n-3) -3*a(n-4) -3*a(n-6) +3*a(n-7) +a(n-9) -a(n-10).
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) +192.
Sum_{n>=0} 1/a(n) = log(2)/2 + Pi/4 + 5*Pi^2/24 - 2 - C = 0.27217..., where C is Catalan's constant (A006752).
G.f.: 2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7) / ((1-x)^4*(1+x +x^2)^3). (End)
a(n) = A002411(A004772(n+1)). - Bruno Berselli, Oct 24 2012

Extensions

More terms from Patrick De Geest, Jul 14 1999