A015224 Even pentagonal pyramidal numbers.
0, 6, 18, 40, 126, 196, 288, 550, 726, 936, 1470, 1800, 2176, 3078, 3610, 4200, 5566, 6348, 7200, 9126, 10206, 11368, 13950, 15376, 16896, 20230, 22050, 23976, 28158, 30420, 32800, 37926, 40678, 43560, 49726, 53016, 56448, 63750, 67626, 71656
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 3, -3, 0, -3, 3, 0, 1, -1).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))); // G. C. Greubel, Aug 24 2018 -
Mathematica
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{0,6,18,40,126,196,288,550, 726,936},40] (* Ant King, Oct 19 2012 *)
-
PARI
x='x+O('x^30); concat([0], Vec(2*x*(3+6*x+11*x^2+34*x^3 +17*x^4 +13*x^5+11*x^6+x^7)/((1-x)^4*(1+x +x^2)^3))) \\ G. C. Greubel, Aug 24 2018
Formula
From Ant King, Oct 24 2012: (Start)
a(n) = a(n-1) +3*a(n-3) -3*a(n-4) -3*a(n-6) +3*a(n-7) +a(n-9) -a(n-10).
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) +192.
Sum_{n>=0} 1/a(n) = log(2)/2 + Pi/4 + 5*Pi^2/24 - 2 - C = 0.27217..., where C is Catalan's constant (A006752).
G.f.: 2*x*(3+6*x+11*x^2+34*x^3+17*x^4+13*x^5+11*x^6+x^7) / ((1-x)^4*(1+x +x^2)^3). (End)
Extensions
More terms from Patrick De Geest, Jul 14 1999