cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015442 a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, 19951, 66263, 205920, 669761, 2111201, 6799528, 21577935, 69174631, 220220176, 704442593, 2245983825, 7177081976, 22898968751, 73138542583, 233431323840, 745401121921, 2379420388801
Offset: 0

Views

Author

Keywords

Comments

One obtains A015523 through a binomial transform, and A197189 by shifting one place left (starting 1,1,8 with offset 0) followed by a binomial transform. - R. J. Mathar, Oct 11 2011
The compositions of n in which each positive integer is colored by one of p different colors are called p-colored compositions of n. For n>=2, 8*a(n-1) equals the number of 8-colored compositions of n, with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
a(n+1) is the number of compositions (ordered partitions) of n into parts 1 and 2, where there are 7 sorts of part 2. - Joerg Arndt, Jan 16 2024
Pisano period lengths: 1, 3, 8, 6, 4, 24, 1, 6, 24, 12, 60, 24, 12, 3, 8, 6, 288, 24, 120, 12, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else Self(n-1) + 7*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Mathematica
    LinearRecurrence[{1, 7}, {0, 1}, 30] (* Vincenzo Librandi, Oct 17 2012 *)
    nxt[{a_,b_}]:={b,7a+b}; NestList[nxt,{0,1},30][[All,1]] (* Harvey P. Dale, Feb 25 2022 *)
  • PARI
    concat(0,Vec(1/(1-x-7*x^2)+O(x^99))) \\ Charles R Greathouse IV, Mar 12 2014
  • Sage
    [lucas_number1(n,1,-7) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009
    

Formula

O.g.f.: x/(1-x-7x^2). - R. J. Mathar, May 06 2008
a(n) = ( ((1+sqrt(29))/2)^(n+1) - ((1-sqrt(29))/2)^(n+1) )/sqrt(29).
a(n) = 8*a(n-2) + 7*a(n-3) with characteristic polynomial x^3 - 8*x - 7. - Roger L. Bagula, May 30 2007
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-7)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (Sum_{1<=k<=n, k odd} C(n,k)*29^((k-1)/2))/2^(n-1). - Vladimir Shevelev, Feb 05 2014
a(n) = sqrt(-7)^(n-1)*S(n-1, 1/sqrt(-7)), with the Chebyshev polynomial S(n, x), and S(-1, x) = 1 (see A049310). - Wolfdieter Lang, Nov 26 2023