A015449 Expansion of (1-4*x)/(1-5*x-x^2).
1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686, 11913527111, 61861971241, 321223383316, 1667978887821, 8661117822421, 44973567999926, 233528957822051
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook)
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 16.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (5,1).
Programs
-
GAP
a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
Magma
[n le 2 select 1 else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
-
Maple
a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
-
Mathematica
Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{1,5},#]}]&, {1,1},40]][[1]] (* Harvey P. Dale, Mar 23 2011 *) LinearRecurrence[{5,1}, {1,1}, 30] (* Vincenzo Librandi, Nov 06 2012 *) CoefficientList[Series[(1-4*x)/(1-5*x-x^2), {x,0,30}], x] (* G. C. Greubel, Dec 19 2017 *) Sum[Fibonacci[Range[30] +k-2, 5], {k,0,1}] (* G. C. Greubel, Oct 23 2019 *)
-
PARI
Vec((1-4*x)/(1-5*x-x^2) +O('x^30)) \\ _G. C. Greubel, Dec 19 2017
-
Sage
def A015449_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1-4*x)/(1-5*x-x^2)).list() A015449_list(30) # G. C. Greubel, Oct 23 2019
Formula
a(n) = 5*a(n-1) + a(n-2).
a(n) = Sum_{k=0..n} 4^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
G.f.: (1-4*x)/(1-5*x-x^2). - Philippe Deléham, Nov 20 2008
For n >= 2, a(n) = F_n(5) + F_(n+1)(5), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = Sum_{k=0..n} A046854(n-1,k)*5^k. - R. J. Mathar, Feb 10 2024
Comments