cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015449 Expansion of (1-4*x)/(1-5*x-x^2).

Original entry on oeis.org

1, 1, 6, 31, 161, 836, 4341, 22541, 117046, 607771, 3155901, 16387276, 85092281, 441848681, 2294335686, 11913527111, 61861971241, 321223383316, 1667978887821, 8661117822421, 44973567999926, 233528957822051
Offset: 0

Views

Author

Keywords

Comments

Row m=5 of A135597.
Binomial transform of A152187. - Johannes W. Meijer, Aug 01 2010
For n>=1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....5
.2..|..1.....5....25
.3..|..1....10....25.....125
.4..|..1....10....75.....125....625
.5..|..1....15....75.....500....625....3125
.6..|..1....15...150.....500...3125....3125...15625
.7..|..1....20...150....1250...3125...18750...15625...78125
which is triangle for numbers 5^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n+1) is (for n>=0) the number of length-n strings of 6 letters {0,1,2,3,4,5} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
With offset 1, the sequence is the INVERT transform (1, 5, 5*4, 5*4^2, 5*4^3, ...); i.e., of A003947. The sequence can also be obtained by taking powers of the matrix [(1,5); (1,4)] and extracting the upper left terms. - Gary W. Adamson, Jul 31 2016

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    [n le 2 select 1 else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
    
  • Maple
    a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..21); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{1,5},#]}]&, {1,1},40]][[1]]  (* Harvey P. Dale, Mar 23 2011 *)
    LinearRecurrence[{5,1}, {1,1}, 30] (* Vincenzo Librandi, Nov 06 2012 *)
    CoefficientList[Series[(1-4*x)/(1-5*x-x^2), {x,0,30}], x] (* G. C. Greubel, Dec 19 2017 *)
    Sum[Fibonacci[Range[30] +k-2, 5], {k,0,1}] (* G. C. Greubel, Oct 23 2019 *)
  • PARI
    Vec((1-4*x)/(1-5*x-x^2) +O('x^30)) \\ _G. C. Greubel, Dec 19 2017
    
  • Sage
    def A015449_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-4*x)/(1-5*x-x^2)).list()
    A015449_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

a(n) = 5*a(n-1) + a(n-2).
a(n) = Sum_{k=0..n} 4^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
G.f.: (1-4*x)/(1-5*x-x^2). - Philippe Deléham, Nov 20 2008
For n >= 2, a(n) = F_n(5) + F_(n+1)(5), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} C(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = Sum_{k=0..n} A046854(n-1,k)*5^k. - R. J. Mathar, Feb 10 2024