A015459 q-Fibonacci numbers for q=2, scaling a(n-2).
0, 1, 1, 3, 7, 31, 143, 1135, 10287, 155567, 2789039, 82439343, 2938415279, 171774189743, 12207523172527, 1419381685547183, 201427441344229551, 46711726513354322095, 13247460522448782176431, 6135846878080826487812271
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100.
- L. Carlitz, Fibonacci notes 3: q-Fibonacci Numbers, Fibonacci Quarterly 12 (1974), pp. 317-322.
- Eric Weisstein's World of Mathematics, q-Analog.
Crossrefs
Programs
-
GAP
q:=2;; a:=[0,1];; for n in [3..30] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
Magma
[0] cat [n le 2 select 1 else Self(n-1) + Self(n-2)*(2^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Maple
q:=2; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
Mathematica
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*2^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 08 2012 *) F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}]; Table[F[n, 2], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
PARI
q=2; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
Python
def a(): a, b, p = 0, 1, 1 while True: yield a p, a, b = p + p, b, b + p * a A015463 = a() print([next(A015463) for in range(20)]) # _Peter Luschny, Dec 05 2017
-
Sage
from ore_algebra import * R.
= QQ['x'] A. = OreAlgebra(R, 'Qx', q=2) print((Qx^2 - Qx - x).to_list([0,1], 10)) # Ralf Stephan, Apr 24 2014 -
Sage
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2))) [F(n,2) for n in (0..20)] # G. C. Greubel, Dec 16 2019
Formula
a(n) = a(n-1) + 2^(n-2)*a(n-2).
Associated constant: C_2 = lim_{n->oo} a(2*n)*a(2*n-2)/a(2*n-1)^2 = 1.225306147422043724739386133... (C_1=1). - Benoit Cloitre, Aug 30 2003 [Formula corrected by Vaclav Kotesovec, Dec 05 2017]
a(n)*a(n+3) - a(n)*a(n+2) - 2*a(n+1)*a(n+2) + 2*a(n+1)^2 = 0. - Emanuele Munarini, Dec 05 2017
From Vaclav Kotesovec, Dec 05 2017: (Start)
a(n) ~ c * 2^(n*(n-2)/4), where
c = 2.815179026313038425026160599838001991828247939843695... if n is even and
c = 3.024413799639405763259604599843170276573526808693115... if n is odd. (End)
Comments