A015473
q-Fibonacci numbers for q=2, scale a(n-1).
Original entry on oeis.org
0, 1, 2, 9, 74, 1193, 38250, 2449193, 313534954, 80267397417, 41097221012458, 42083634584154409, 86187324725569242090, 353023324159566199755049, 2891967157702491033962603498, 47381990264820937260009495466281
Offset: 0
q-Fibonacci numbers:
A000045 (q=1), this sequence (q=2),
A015474 (q=3),
A015475 (q=4),
A015476 (q=5),
A015477 (q=6),
A015479 (q=7),
A015480 (q=8),
A015481 (q=9),
A015482 (q=10),
A015484 (q=11),
A015485 (q=12).
-
q:=2;; a:=[0,1];; for n in [3..20] do a[n]:=q^(n-2)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
-
[0] cat [n le 2 select n else 2^(n-1)*Self(n-1) + Self(n-2): n in [1..16]]; // Vincenzo Librandi, Nov 09 2012
-
q:=2; seq(add((product((1-q^(2*(n-j-1-k)))/(1-q^(2*k+2)), k=0..j-1))* q^binomial(n-2*j,2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]*2^(n-1)+a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Nov 09 2012 *)
Join[{0},Denominator[Table[FromContinuedFraction[2^Range[0,n]],{n,0,20}]]] (* Harvey P. Dale, Feb 09 2013 *)
F[n_, q_]:= Sum[QBinomial[n-j-1,j,q^2]*q^Binomial[n-2*j,2], {j,0,Floor[(n-1)/2] }]; Table[F[n, 2], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
-
q=2; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=q^(n-2)*v[n-1]+v[n-2]); v \\ G. C. Greubel, Dec 17 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q^2)*q^binomial(n-2*j,2) for j in (0..floor((n-1)/2)))
[F(n,2) for n in (0..20)] # G. C. Greubel, Dec 17 2019
A015460
q-Fibonacci numbers for q=3, scale a(n-2).
Original entry on oeis.org
0, 1, 1, 4, 13, 121, 1174, 30577, 886423, 67758322, 5883579625, 1339570631551, 348759063908176, 237649677731273173, 185582515360156234789, 379075929664916795231668, 888014493839316022947740209
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2), this sequence (q=3),
A015461 (q=4),
A015462 (q=5),
A015463 (q=6),
A015464 (q=7),
A015465 (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=3;; a:=[0,1];; for n in [3..30] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(3^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
q:=3; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*3^(n-2)}, a, {n, 30}] (* Vincenzo Librandi, Nov 08 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 3], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=3; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,3) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015463
q-Fibonacci numbers for q=6, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 7, 43, 1555, 57283, 12148963, 2684744611, 3403616850979, 4512743621400355, 34305128668265064739, 272902655183139496957219, 12446072589202949254455565603, 594062125322746104949654522449187, 162554939850629908283324416663519980835
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3),
A015461 (q=4),
A015462 (q=5), this sequence (q=6),
A015464 (q=7),
A015465 (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=6;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(6^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 09 2012
-
q:=6; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1]+6^(n-2) a[n-2]},a,{n,20}] (* Harvey P. Dale, Nov 11 2011 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 6], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=6; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,6) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015468
q-Fibonacci numbers for q=10, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 11, 111, 11111, 1121111, 1112221111, 1122223221111, 11123333333221111, 112233445444433221111, 11123445566666555433221111, 1122345577889898877665433221111, 1112345679012233433220988765433221111
Offset: 0
-
q:=10;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(10^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
-
q:=10; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*10^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 10], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
-
q=10; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,10) for n in (0..20)] # G. C. Greubel, Dec 17 2019
A015461
q-Fibonacci numbers for q=4, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 5, 21, 341, 5717, 354901, 23771733, 5838469717, 1563742763605, 1532083548256853, 1641235215638133333, 6427665390003549698645, 27541785384957544314239573, 431380864280640133787922528853
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3), this sequence (q=4),
A015462 (q=5),
A015463 (q=6),
A015464 (q=7),
A015465 (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=4;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(4^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
q:=4; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*4^(n-2)}, a, {n, 30}] (* Vincenzo Librandi, Nov 08 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 4], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=4; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,4) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015462
q-Fibonacci numbers for q=5, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 6, 31, 781, 20156, 2460781, 317398281, 192565913906, 124176269429531, 376229476867085781, 1213035110624630757656, 18371792960261297531148281, 296169521847801754865890523281, 22426801247965814514582357345601406
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3),
A015461 (q=4), this sequence (q=5),
A015463 (q=6),
A015464 (q=7),
A015465 (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=5;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(5^(n-2)): n in [1..20]]; // Vincenzo Librandi, Nov 09 2012
-
q:=5; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*5^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b+a*5^(n-1)}; NestList[nxt,{1,0,1},20][[All,2]] (* Harvey P. Dale, Aug 19 2019 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 5], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=5; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,5) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015464
q-Fibonacci numbers for q=7, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 8, 57, 2801, 139658, 47216065, 16477840107, 38900937658402, 95030370064332109, 1569888180568718888123, 26845297334664927227358264, 3104208728255475471662060331653, 371576574614065326331102018605110717
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3),
A015461 (q=4),
A015462 (q=5),
A015463 (q=6), this sequence (q=7),
A015465 (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=7;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(7^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
-
q:=7; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
Join[{0},RecurrenceTable[{a[1]==1,a[2]==1,a[n]==a[n-1]+7^(n-2)a[n-2]}, a[n],{n,20}]] (* Harvey P. Dale, May 14 2011 *)
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*7^(n-2)}, a, {n, 25}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 7], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=7; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,7) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015465
q-Fibonacci numbers for q=8, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 9, 73, 4681, 303689, 153690697, 79763939913, 322392516534857, 1338539241447957065, 43272129632752387301961, 1437288838737538572434088521, 371706200490726725394268777423433, 98770108622737228265012391281001570889
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3),
A015461 (q=4),
A015462 (q=5),
A015463 (q=6),
A015464 (q=7), this sequence (q=8),
A015467 (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=8;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(8^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
-
q:=8; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*8^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 8], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=8; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,8) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015467
q-Fibonacci numbers for q=9, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 10, 91, 7381, 604432, 436445101, 321656391613, 2087825044676482, 13848340772676227455, 808880048095782179467153, 48286987465947852695801396608, 25383561292811993463191359951919785, 13637696871632801620185917930189837576233
Offset: 0
q-Fibonacci numbers:
A000045 (q=1),
A015459 (q=2),
A015460 (q=3),
A015461 (q=4),
A015462 (q=5),
A015463 (q=6),
A015464 (q=7),
A015465 (q=8), this sequence (q=9),
A015468 (q=10),
A015469 (q=11),
A015470 (q=12).
-
q:=9;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 16 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(9^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
-
q:=9; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 16 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1] + a[n-2]*9^(n-2)}, a, {n, 20}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 9], {n, 0, 20}] (* G. C. Greubel, Dec 16 2019 *)
-
q=9; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 16 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,9) for n in (0..20)] # G. C. Greubel, Dec 16 2019
A015469
q-Fibonacci numbers for q=11, scaling a(n-2).
Original entry on oeis.org
0, 1, 1, 12, 133, 16105, 1963358, 2595689713, 3480804151551, 50586130104323474, 746191869036731097905, 119280194867984161366496439, 19354414621214347335584253057344, 34032051023004810891710239239325511573
Offset: 0
-
q:=11;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
-
[0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(11^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
-
q:=11; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*11^(n-2)}, a, {n, 61}] (* Vincenzo Librandi, Nov 09 2012 *)
F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
Table[F[n, 11], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
-
q=11; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
-
def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
[F(n,11) for n in (0..20)] # G. C. Greubel, Dec 17 2019
Showing 1-10 of 16 results.
Comments