cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015524 a(n) = 3*a(n-1) + 7*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 3, 16, 69, 319, 1440, 6553, 29739, 135088, 613437, 2785927, 12651840, 57457009, 260933907, 1185000784, 5381539701, 24439624591, 110989651680, 504046327177, 2289066543291, 10395523920112, 47210037563373, 214398780130903, 973666603336320, 4421791270925281, 20081040036130083
Offset: 0

Views

Author

Keywords

Comments

Linear 2nd order recurrence.

Programs

  • Magma
    [n le 2 select n-1 else 3*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,3},{1,-4}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{3,7},{0,1},30] (* Harvey P. Dale, Jul 04 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 3*x - 7*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-7) for n in range(0, 23)] #  Zerinvary Lajos, Apr 22 2009
    

Formula

From R. J. Mathar, Apr 21 2008: (Start)
O.g.f.: x/(1 - 3*x - 7*x^2).
a(n) = 14^n*(1/A^n -(-1)^n/B^n)/sqrt(37), where A = sqrt(37) - 3 = A010491 - 3 and B = sqrt(37) + 3 = A010491 + 3. (End)
a(n) = (7*(111+23*sqrt(37))*(1/2*(3+sqrt(37)))^n + (2553 + 431*sqrt(37)) * (1/2 (3-sqrt(37)))^n)/(518*(45+8*sqrt(37))). - Harvey P. Dale, Jul 04 2011