A015525 Expansion of x/(1-3*x-8*x^2).
0, 1, 3, 17, 75, 361, 1683, 7937, 37275, 175321, 824163, 3875057, 18218475, 85655881, 402715443, 1893393377, 8901903675, 41852858041, 196773803523, 925144274897, 4349623252875, 20450023957801, 96147057896403
Offset: 0
Examples
G.f. = x + 3*x^2 + 17*x^3 + 75*x^4 + 361*x^5 + 1683*x^6 + 7937*x^7 + ... - _Michael Somos_, Mar 05 2020
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,8).
Programs
-
Magma
[n le 2 select n-1 else 3*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
-
Mathematica
a[n_]:=(MatrixPower[{{1,4},{1,-4}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{3, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *) a[ n_] := With[{m=n-1, t=Sqrt[-8]}, t^m ChebyshevU[m, -t 3/16]]; (* Michael Somos, Mar 05 2020 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-3*x-8*x^2))) \\ G. C. Greubel, Jan 01 2017
-
PARI
{a(n) = if( n<0, -(-8)^n * a(-n), polcoeff( x / (1 - 3*x - 8*x^2) + x * O(x^n), n))}; /* Michael Somos, Mar 05 2020 */
-
Sage
[lucas_number1(n,3,-8) for n in range(0, 23)]# Zerinvary Lajos, Apr 22 2009
Formula
a(n) = 3*a(n-1) + 8*a(n-2).
a(n) = -16^n*(A^n-B^n)/sqrt(41) where A = -1/(3+sqrt(41)) and B = 1/(sqrt(41)-3). - R. J. Mathar, Apr 29 2008
a(n) = -(-8)^n * a(-n) for all n in Z. - Michael Somos, Mar 05 2020