A015530 Expansion of x/(1 - 4*x - 3*x^2).
0, 1, 4, 19, 88, 409, 1900, 8827, 41008, 190513, 885076, 4111843, 19102600, 88745929, 412291516, 1915403851, 8898489952, 41340171361, 192056155300, 892245135283, 4145149007032, 19257331433977, 89464772757004
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
- Wikipedia, Lucas sequence.
- Index entries for linear recurrences with constant coefficients, signature (4,3).
Crossrefs
Cf. A080042: Lucas sequence V(4,-3).
Programs
-
Magma
I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
-
Mathematica
LinearRecurrence[{4,3},{0,1},30] (* Vincenzo Librandi, Jun 19 2012 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-4*x-3*x^2))) \\ G. C. Greubel, Jan 24 2018
-
Sage
[lucas_number1(n,4,-3) for n in range(0, 23)]# Zerinvary Lajos, Apr 23 2009
Formula
a(n) = 4*a(n-1) + 3*a(n-2).
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*3^k*4^(n-2k-1). - Paul Barry, Apr 23 2005
a(n) = ((2+sqrt(7))^n - (2-sqrt(7))^n)/sqrt(28). Offset 1. a(3)=19. - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit(a(n+k)/a(k), k=infinity) = A108851(n)+a(n)*sqrt(7).
Limit(A108851(n)/a(n), n=infinity) = sqrt(7). (End)
G.f.: x*G(0) where G(k)= 1 + (4*x+3*x^2)/(1 - (4*x+3*x^2)/(4*x + 3*x^2 + 1/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 28 2012
G.f.: G(0)*x/(2-4*x), where G(k)= 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
Comments