A015555 Expansion of x/(1 - 7*x - 2*x^2).
0, 1, 7, 51, 371, 2699, 19635, 142843, 1039171, 7559883, 54997523, 400102427, 2910712035, 21175189099, 154047747763, 1120684612539, 8152887783299, 59311583708171, 431486861523795, 3139031198082907, 22836192109627939
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,2).
Programs
-
Magma
[n le 2 select n-1 else 7*Self(n-1) + 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Mathematica
Join[{a=0,b=1},Table[c=7*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) LinearRecurrence[{7, 2}, {0, 1}, 30] (* Vincenzo Librandi Nov 13 2012 *) CoefficientList[Series[x/(1-7x-2x^2),{x,0,20}],x] (* Harvey P. Dale, Mar 14 2025 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-7*x-2*x^2))) \\ G. C. Greubel, Dec 30 2017
-
Sage
[lucas_number1(n,7,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Formula
a(n) = 7*a(n-1) + 2*a(n-2).
E.g.f.: (exp(x*(7 + sqrt(57))/2) - exp(x*(7 - sqrt(57))/2))/sqrt(57). - Iain Fox, Dec 30 2017
Comments