A015575 Expansion of x/(1 - 8*x - 5*x^2).
0, 1, 8, 69, 592, 5081, 43608, 374269, 3212192, 27568881, 236612008, 2030740469, 17428983792, 149585572681, 1283829500408, 11018563866669, 94567658435392, 811634086816481, 6965910986708808, 59785458327752869, 513113221555566992, 4403833064083300281, 37796230620444237208
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,5).
Programs
-
Magma
[n le 2 select n-1 else 8*Self(n-1) + 5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
-
Mathematica
Join[{a=0,b=1},Table[c=8*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) LinearRecurrence[{8, 5}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *) CoefficientList[Series[x/(1-8x-5x^2),{x,0,30}],x] (* Harvey P. Dale, Feb 28 2023 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-8*x-5*x^2))) \\ G. C. Greubel, Jan 06 2018
-
Sage
[lucas_number1(n,8,-5) for n in range(0, 20)] # Zerinvary Lajos, Apr 25 2009
Formula
a(n) = 8*a(n-1) + 5*a(n-2).
Comments