A015585 a(n) = 9*a(n-1) + 10*a(n-2).
0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (9,10).
Crossrefs
Programs
-
Magma
[Round(10^n/11): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
Mathematica
k=0;lst={k};Do[k=10^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) LinearRecurrence[{9,10},{0,1},30] (* Harvey P. Dale, Aug 08 2014 *)
-
PARI
a(n)=10^n\/11 \\ Charles R Greathouse IV, Jun 24 2011
-
Sage
[lucas_number1(n,9,-10) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
-
Sage
[abs(gaussian_binomial(n,1,-10)) for n in range(0,19)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = 9*a(n-1) + 10*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 10^(n-1) - a(n-1).
G.f.: x/(1 - 9x - 10x^2). (End)
From Henry Bottomley, Sep 17 2004: (Start)
a(n) = round(10^n/11).
a(n) = (10^n - (-1)^n)/11.
E.g.f.: exp(-x)*(exp(11*x) - 1)/11. - Elmo R. Oliveira, Aug 17 2024
Extensions
Extended by T. D. Noe, May 23 2011
Comments