A015592 a(n) = 10*a(n-1) + 11*a(n-2).
0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- Index entries for linear recurrences with constant coefficients, signature (10,11).
Crossrefs
Programs
-
Magma
[-(1/12)*(-1)^n+(1/12)*11^n: n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
Mathematica
k=0;lst={k};Do[k=11^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
-
Sage
[lucas_number1(n,10,-11) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
Formula
a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)
Comments