A206369 a(p^k) = p^k - p^(k-1) + p^(k-2) - ... +- 1, and then extend by multiplicativity.
1, 1, 2, 3, 4, 2, 6, 5, 7, 4, 10, 6, 12, 6, 8, 11, 16, 7, 18, 12, 12, 10, 22, 10, 21, 12, 20, 18, 28, 8, 30, 21, 20, 16, 24, 21, 36, 18, 24, 20, 40, 12, 42, 30, 28, 22, 46, 22, 43, 21, 32, 36, 52, 20, 40, 30, 36, 28, 58, 24, 60, 30, 42, 43, 48, 20, 66, 48, 44, 24, 70, 35
Offset: 1
References
- P. J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, page 25.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014.
Crossrefs
Programs
-
Haskell
a206369 n = product $ zipWith h (a027748_row n) (map toInteger $ a124010_row n) where h p e = sum $ take (fromInteger e + 1) $ iterate ((* p) . negate) (1 - 2 * (e `mod` 2)) -- Reinhard Zumkeller, Feb 08 2012
-
Maple
a:= n-> mul(add(i[1]^(i[2]-j)*(-1)^j, j=0..i[2]), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Nov 03 2017
-
Mathematica
Table[Length[Select[Range[n], IntegerQ[GCD[n, #]^(1/2)] &]], {n, 72}] (* Geoffrey Critzer, Feb 16 2015 *) a[n_] := n*DivisorSum[n, LiouvilleLambda[#]/#&]; Array[a, 72] (* Jean-François Alcover, Dec 04 2017, after Enrique Pérez Herrero *) f[p_,e_] := Sum[(-1)^(e-k)*p^k, {k,0,e}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jan 01 2020 *)
-
PARI
a(n) = sum(k=1, n, issquare(gcd(n, k)));
-
PARI
ak(p,e)=my(s=1); for(i=1,e, s=s*p + (-1)^i); s a(n)=my(f=factor(n)); prod(i=1,#f~, ak(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Dec 27 2016
-
PARI
a(n) = sumdiv(n, d, eulerphi(n/d) * issquare(d)); \\ Daniel Suteu, Jun 27 2018
-
PARI
apply( {A206369(n)=vecprod([f[1]^(f[2]+1)\/(f[1]+1)|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Feb 13 2020
-
Python
from math import prod from sympy import factorint def A206369(n): return prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 05 2024
Formula
a(n) = abs(A061020(n)).
a(n) = n*Sum_{d|n} lambda(d)/d, where lambda(n) is A008836(n). - Enrique Pérez Herrero, Sep 23 2012
Dirichlet g.f.: zeta(s - 1)*zeta(2*s)/zeta(s). - Geoffrey Critzer, Feb 25 2015
From Michel Marcus, Nov 05 2017: (Start)
a(2^n) = A001045(n+1);
a(3^n) = A015518(n+1);
a(5^n) = A015531(n+1);
a(7^n) = A015552(n+1);
a(11^n) = A015592(n+1). (End)
a(p^k) = p^k - a(p^(k - 1)) for k > 0 and prime p. - David A. Corneth, Nov 09 2017
a(n) = Sum_{d|n, d is a perfect square} phi(n/d), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 27 2018
a(p^k) = A071324(p^k), for k >= 0 and prime p. - Michel Marcus, Aug 11 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 30. - Vaclav Kotesovec, Feb 07 2019
G.f.: Sum_{k>=1} lambda(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, May 23 2019
a(n) = Sum_{i=1..n} A010052(gcd(n,i)). - Ridouane Oudra, Nov 24 2019
a(p^k) = round(p^(k+1)/(p+1)). - M. F. Hasler, Feb 13 2020
Comments