cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206369 a(p^k) = p^k - p^(k-1) + p^(k-2) - ... +- 1, and then extend by multiplicativity.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 5, 7, 4, 10, 6, 12, 6, 8, 11, 16, 7, 18, 12, 12, 10, 22, 10, 21, 12, 20, 18, 28, 8, 30, 21, 20, 16, 24, 21, 36, 18, 24, 20, 40, 12, 42, 30, 28, 22, 46, 22, 43, 21, 32, 36, 52, 20, 40, 30, 36, 28, 58, 24, 60, 30, 42, 43, 48, 20, 66, 48, 44, 24, 70, 35
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2012

Keywords

Comments

For more information see the Comments in A061020.
a(n) is the number of integers j such that 1 <= j <= n and gcd(n,j) is a perfect square. For example, a(12) = 6 because |{1,4,5,7,8,11}|=6 and the respective GCDs with 12 are 1,4,1,1,4,1, which are squares. - Geoffrey Critzer, Feb 16 2015
If m is squarefree (A005117), then a(m) = A000010(m) where A000010 is the Euler totient function. - Michel Marcus, Nov 08 2017
Also it appears that the primorials (A002110) is the sequence of indices of minimum records for a(n)/n, and these records are A038110(n)/A060753(n). - Michel Marcus, Nov 09 2017
Also called rho(n). When rho(n) | n, then n is called k-imperfect, with k = n/rho(n), cf. A127724. - M. F. Hasler, Feb 13 2020

References

  • P. J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, page 25.

Crossrefs

Cf. A027748 row, A124010, A206475 (first differences).
Cf. A078429.
Cf. A127724 (k-imperfect), A127725 (2-imperfect), A127726 (3-imperfect).

Programs

  • Haskell
    a206369 n = product $
       zipWith h (a027748_row n) (map toInteger $ a124010_row n) where
               h p e = sum $ take (fromInteger e + 1) $
                             iterate ((* p) . negate) (1 - 2 * (e `mod` 2))
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Maple
    a:= n-> mul(add(i[1]^(i[2]-j)*(-1)^j, j=0..i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 03 2017
  • Mathematica
    Table[Length[Select[Range[n], IntegerQ[GCD[n, #]^(1/2)] &]], {n, 72}] (* Geoffrey Critzer, Feb 16 2015 *)
    a[n_] := n*DivisorSum[n, LiouvilleLambda[#]/#&]; Array[a, 72] (* Jean-François Alcover, Dec 04 2017, after Enrique Pérez Herrero *)
    f[p_,e_] := Sum[(-1)^(e-k)*p^k, {k,0,e}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jan 01 2020 *)
  • PARI
    a(n) = sum(k=1, n, issquare(gcd(n, k)));
    
  • PARI
    ak(p,e)=my(s=1); for(i=1,e, s=s*p + (-1)^i); s
    a(n)=my(f=factor(n)); prod(i=1,#f~, ak(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Dec 27 2016
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d) * issquare(d)); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    apply( {A206369(n)=vecprod([f[1]^(f[2]+1)\/(f[1]+1)|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Feb 13 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A206369(n): return prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 05 2024

Formula

a(n) = abs(A061020(n)).
a(n) = n*Sum_{d|n} lambda(d)/d, where lambda(n) is A008836(n). - Enrique Pérez Herrero, Sep 23 2012
Dirichlet g.f.: zeta(s - 1)*zeta(2*s)/zeta(s). - Geoffrey Critzer, Feb 25 2015
From Michel Marcus, Nov 05 2017: (Start)
a(2^n) = A001045(n+1);
a(3^n) = A015518(n+1);
a(5^n) = A015531(n+1);
a(7^n) = A015552(n+1);
a(11^n) = A015592(n+1). (End)
a(p^k) = p^k - a(p^(k - 1)) for k > 0 and prime p. - David A. Corneth, Nov 09 2017
a(n) = Sum_{d|n, d is a perfect square} phi(n/d), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 27 2018
a(p^k) = A071324(p^k), for k >= 0 and prime p. - Michel Marcus, Aug 11 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 30. - Vaclav Kotesovec, Feb 07 2019
G.f.: Sum_{k>=1} lambda(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, May 23 2019
a(n) = Sum_{i=1..n} A010052(gcd(n,i)). - Ridouane Oudra, Nov 24 2019
a(p^k) = round(p^(k+1)/(p+1)). - M. F. Hasler, Feb 13 2020

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020
Showing 1-3 of 3 results.