A015613 a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).
0, 0, 1, 2, 5, 6, 11, 14, 19, 22, 31, 34, 45, 50, 57, 64, 79, 84, 101, 108, 119, 128, 149, 156, 175, 186, 203, 214, 241, 248, 277, 292, 311, 326, 349, 360, 395, 412, 435, 450, 489, 500, 541, 560, 583, 604, 649, 664, 705, 724, 755, 778, 829, 846, 885, 908, 943
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, numtheory[phi](n)-1+a(n-1)) end: seq(a(n), n=1..100); # Alois P. Heinz, Aug 11 2019
-
Mathematica
f[n_] := Module[{s, i}, s = 0; For[i = 1, i < n, i++, If[Mod[n, i] != 0, s = s + EulerPhi[i]]]; s]; Table[f[i], {i, 1, 100}] Table[Sum[EulerPhi[i](Ceiling[n/i]-Floor[n/i]),{i,n}],{n,60}] (* Harvey P. Dale, Feb 06 2025 *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A015613(n): # based on second formula in A018805 if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(2*(A015613(k1)+k1)-1) j, k1 = j2, n//j2 return (n*(n-3)-c+j)//2 # Chai Wah Wu, Mar 25 2021
Formula
a(n) = sum of phi(e) where e ranges over all nondivisors of n that are between 1 and n. - Joseph L. Pe, Oct 24 2002
a(n) = A002088(n) - n.
Extensions
Edited by Vladeta Jovovic, Mar 23 2003
Comments