cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015613 a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).

Original entry on oeis.org

0, 0, 1, 2, 5, 6, 11, 14, 19, 22, 31, 34, 45, 50, 57, 64, 79, 84, 101, 108, 119, 128, 149, 156, 175, 186, 203, 214, 241, 248, 277, 292, 311, 326, 349, 360, 395, 412, 435, 450, 489, 500, 541, 560, 583, 604, 649, 664, 705, 724, 755, 778, 829, 846, 885, 908, 943
Offset: 1

Views

Author

Joseph L. Pe, Oct 24 2002

Keywords

Comments

a(n) is half the number of fractions reduced to lowest terms with numerator and denominator in {2, 3, ..., n}. a(5) = 5 = (1/2) * |{2/3, 2/5, 3/2, 3/4, 3/5, 4/3, 4/5, 5/2, 5/3, 5/4}|. - Stefano Spezia, Aug 11 2019

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
           numtheory[phi](n)-1+a(n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 11 2019
  • Mathematica
    f[n_] := Module[{s, i}, s = 0; For[i = 1, i < n, i++, If[Mod[n, i] != 0, s = s + EulerPhi[i]]]; s]; Table[f[i], {i, 1, 100}]
    Table[Sum[EulerPhi[i](Ceiling[n/i]-Floor[n/i]),{i,n}],{n,60}] (* Harvey P. Dale, Feb 06 2025 *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015613(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*(A015613(k1)+k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-3)-c+j)//2 # Chai Wah Wu, Mar 25 2021

Formula

a(n) = sum of phi(e) where e ranges over all nondivisors of n that are between 1 and n. - Joseph L. Pe, Oct 24 2002
a(n) = A002088(n) - n.
a(n) = A091369(n) - A000217(n). - Alois P. Heinz, Aug 11 2019

Extensions

Edited by Vladeta Jovovic, Mar 23 2003