cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003503 The larger of a betrothed pair.

Original entry on oeis.org

75, 195, 1925, 1648, 2295, 6128, 16587, 20735, 75495, 206504, 219975, 309135, 507759, 549219, 544784, 817479, 1057595, 1902215, 1331967, 1159095, 1763019, 1341495, 1348935, 1524831, 1459143, 2576945, 2226014, 2681019, 2142945, 2421704, 3220119, 3123735
Offset: 1

Views

Author

Keywords

Comments

It has been shown that (1) all known betrothed pairs are of opposite parity and (2) if a and b are a betrothed pair, and if a < b are of the same parity, then a > 10^10. See the reference for the Hagis & Lord paper. Can it be shown that all betrothed pairs are of opposite parity? - Harvey P. Dale, Apr 07 2013
From David A. Corneth, Jan 26 2019: (Start)
Let (k, m) be a betrothed pair. Then sigma(k) = sigma(m). Proof:
k = sigma(m) - m - 1 (1)
m = sigma(k) - k - 1 (2)
Partially substituting (1) in (2) gives
m = sigma(k) - (sigma(m) - m - 1) - 1 = sigma(k) - sigma(m) + m + 1 - 1 which simplifies to sigma(k) = sigma(m). QED.
If k and m are odd then they are both square. If k and m are even then they are square or twice a square (not necessarily both in the same family).
Proof: sigma(k) is odd iff k is a square or twice a square (cf. A028982). Hence if k isn't of that form (and sigma(k) is even) then the parity of sigma(k) - k - 1 is odd for odd k and even for even k.
If k is an odd square then sigma(k) - k - 1 is odd.
If k is twice a square or an even square then sigma(k) - k - 1 is even. QED.
Using inspection and the results above, if k and m are a betrothed pair of the same parity, the minimal term is > 2*10^14. (End)

Examples

			75 is a term because sigma(75) - 75 - 1 = 124 - 75 - 1 = 48 and 75 > 48 and sigma(48) - 48 - 1 = 124 - 48 - 1 = 75. - _David A. Corneth_, Jan 24 2019
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B5.

Crossrefs

Programs

  • Mathematica
    aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]][[2]] (* Amiram Eldar, Jan 24 2019 after Harvey P. Dale at A015630 *)
  • PARI
    is(n) = m = sigma(n) - n - 1; if(m < 1 || n <= m, return(0)); n == sigma(m) - m - 1 \\ David A. Corneth, Jan 24 2019

Extensions

Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
Extended by T. D. Noe, Dec 29 2011

A007992 Augmented amicable pairs (smaller member of each pair).

Original entry on oeis.org

6160, 12220, 23500, 68908, 249424, 425500, 434784, 649990, 660825, 1017856, 1077336, 1238380, 1252216, 1568260, 1754536, 2166136, 2362360, 2482536, 2537220, 2876445, 3957525, 4177524, 4287825, 5224660, 5559510, 5641552
Offset: 1

Views

Author

Keywords

Comments

Let f(n) = 1 + sum of aliquot divisors of n; these are pairs (n,m) with f(n)=m, f(m)=n.
m cannot equal n. - Harvey P. Dale, May 18 2012
The term "augmented amicable numbers" was coined by Beck and Wajar (1977), who found the first 11 pairs. They also found the next 25 pairs (1993). - Amiram Eldar, Mar 09 2024

Crossrefs

Cf. A015630.

Programs

  • Mathematica
    aapQ[n_]:=Module[{c=DivisorSigma[1,n]+1-n},c!=n&&DivisorSigma[ 1,c]+1-c == n]; Transpose[Union[Sort[{#,DivisorSigma[1,#]+1-#}]&/@Select[Range[ 6000000],aapQ]]] [[1]] (* Harvey P. Dale, May 18 2012 *)

A095702 Smallest "n-augmented" amicable number: the smallest positive integer k such that m = sigma(k) - k + n > k and k = sigma(m) - m + n, where sigma(k) is the sum of the divisors of k.

Original entry on oeis.org

220, 6160, 24, 180, 20, 6, 224, 2632, 40, 10, 16, 28, 340, 14, 15, 42, 66, 3696, 208, 20, 21, 54, 264, 24, 68, 26, 88, 120, 102, 30, 4030, 56, 33, 34, 35, 60, 110, 38, 280, 40, 354, 66, 476, 44, 130, 46, 408, 92, 1276, 96, 51, 52, 354, 78, 55, 120, 57, 58, 852, 60, 170
Offset: 0

Views

Author

Jack Brennen, Jul 06 2004

Keywords

Examples

			a(1)= 6160 because sigma(6160)-6160+1 == 11697, sigma(11697)-11697+1 == 6160 and 6160 is the smallest integer for which this holds.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = n + 1, s}, While[( s = DivisorSigma[1, k] - k + n) <= k || DivisorSigma[1, s] - s + n != k, k++]; k]; Array[a, 61, 0] (* Amiram Eldar, Dec 24 2020 *)
  • PARI
    for(g=0,60,x=g+1;while(1,a=sigma(x)-x+g;if((a-x)*a,if(sigma(a)-a+g==x,print1(x,",");break));x+=1))

A306868 Larger of augmented bi-unitary amicable pair.

Original entry on oeis.org

871585, 1388145, 1483785, 2479065, 2580105, 4895241, 3830625, 7336455, 9100905, 10350345, 16933105, 9843526, 16367481, 24829945, 15706090, 18653745, 27866241, 21080865, 15439545, 23872185, 24401601, 32263905, 53763535, 63075321, 41337555, 60923577, 90245793
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented bi-unitary amicable pair if bsigma(m) = bsigma(n) = m + n - 1, where bsigma(n) is the sum of bi-unitary divisors of n (A188999).
The terms are ordered according to their lesser counterparts (A306867).

Examples

			871585 is in the sequence since it is the larger of the amicable pair (434784, 871585): bsigma(434784) = bsigma(871585) = 1306368 = 434784 + 871585 - 1.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); f[n_] := bsigma[n] - n + 1; s={}; Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, m]], {n, 1, 10^7}]; s

A306873 Larger of augmented unitary amicable pair.

Original entry on oeis.org

7336455, 41337555, 110691295, 108212055, 154646206, 313439511, 6400149855, 9971007915, 10049576691, 9849706755, 12125842995, 12180547995, 14064001666, 18225635506, 26623431835, 20500208806, 23746912995, 23952459706, 43137954706, 56039259255, 99517314526, 125782774755
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2019

Keywords

Comments

A pair m < n is an augmented unitary amicable pair if usigma(m) = usigma(n) = m + n - 1, where usigma(n) is the sum of unitary divisors of n (A034460).
The terms are ordered according to their lesser counterparts (A306872).

Examples

			7336455 is in the sequence since it is the larger of the amicable pair (6224890, 7336455): usigma(6224890) = usigma(7336455) = 13561344 = 6224890 + 7336455 - 1.
		

Crossrefs

Programs

  • Mathematica
    us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n;  s={}; Do[m = us[n] + 1; If[m > n && us[m] == n - 1, AppendTo[s, m]], {n, 1, 10^9}]; s

A126161 Number of augmented amicable pairs (m,n) with m

Original entry on oeis.org

0, 0, 0, 1, 4, 9, 36, 84, 188, 420, 930, 1931
Offset: 1

Views

Author

Ant King, Dec 20 2006

Keywords

Examples

			a(6)=9 because there are 9 augmented amicable pairs with m<=10^6
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=DivisorSigma[1,n]-n; AugmentedAmicableNumberQ[n_]:=If[s[s[n]+1]==n-1 && !DivisorSigma[1,n]==2n-1,True,False]; AugmentedAmicablePairList[ k_]:=(bnlist=Select[Range[k], AugmentedAmicableNumberQ[ # ]&]; newprlist= Table[Sort[{bnlist[[n]],s[bnlist[[n]]]+1}],{n,1,Length[bnlist]}]; augamprlist=Union[newprlist,newprlist]); data=AugmentedAmicablePairList[10^7]; Table[Length[Select[data,First[ # ]<10^k &]],{k,1,7}]

Formula

An augmented amicable pair (m,n) is a pair of integers m, n with m

A281265 Variation on betrothed numbers.

Original entry on oeis.org

6160, 11697, 12220, 16005, 23500, 28917, 68908, 76245, 249424, 339825, 425500, 434784, 570405, 649990, 660825, 678376, 697851, 871585, 1017856, 1077336, 1238380, 1252216, 1340865, 1483785, 1568260, 1754536, 1823925, 1899261, 2067625, 2166136, 2362360, 2479065
Offset: 1

Author

Paolo P. Lava, Apr 13 2017

Keywords

Comments

Members of a pair (x,y) such that sigma(x) = sigma(y) = x + y - 1, where sigma = A000203.
The first time a pair ordered by its first element is not adjacent is x = 425500, y = 570405 which correspond to a(11) and a(13), respectively.

Examples

			sigma(6160) = sigma(11697) = 6160 + 11697 - 1 = 17856.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,n; for n from 1 to q do
    a:=sigma(n)-n+1; b:=sigma(a)-a+1; if b=n and a<>b then print(n);
    fi; od; end: P(10^9);

Formula

Showing 1-7 of 7 results.