cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015735 Row sums of triangle A004747.

Original entry on oeis.org

1, 3, 17, 145, 1661, 23931, 415773, 8460257, 197360985, 5192853011, 152137882601, 4911873672113, 173268075672277, 6630323916472075, 273555262963272501, 12105084133976359361, 571897644855277242673, 28731255563712689630627, 1529450942687399074134465
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-3*x)^(1/3)) - 1 ))); // G. C. Greubel, Oct 02 2023
    
  • Mathematica
    a[1]=1; a[n_]:= 1 +(n-1)!*Sum[Binomial[k, n-m-k]*Binomial[k+n-1,n-1]*(-1/3)^(n-m-k)/(m-1)!, {m,n}, {k,n-m}]; Table[a[n], {n,20}] (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
    Rest@With[{m=30}, CoefficientList[Series[Exp[1-Surd[1-3*x,3]] -1, {x, 0,m}], x]*Range[0,m]!] (* G. C. Greubel, Oct 02 2023 *)
  • Maxima
    a(n):=if n=1 then 1 else (n-1)!*sum(sum(binomial(k,n-m-k)* (-1/3)^(n-m-k)*binomial(k+n-1,n-1),k,1,n-m)/(m-1)!,m,1,n)+1; /* Vladimir Kruchinin, Aug 08 2010 */
    
  • SageMath
    def A015735_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(1-(1-3*x)^(1/3)) -1 ).egf_to_ogf().list()
    a=A015735_list(40); a[1:] # G. C. Greubel, Oct 02 2023

Formula

E.g.f.: exp(1-(1-3*x)^(1/3)) - 1, if one takes a(0)=0.
a(n) = 6*(n-2)*a(n-1) - (3*n-8)*(3*n-7)*a(n-2) + a(n-3), a(0)=1, a(1)=1, a(2)=3.
a(n) = 1 + (n-1)!*Sum_{m=1..n} ( Sum_{k=1..n-m} C(k, n-m-k)*C(k+n-1, n-1)*(-1/3)^(n-m-k) ) / (m-1)!, n > 1. - Vladimir Kruchinin, Aug 08 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator 1/(1-x)^2*d/dx. Cf. A001515, A016036 and A028575. - Peter Bala, Nov 25 2011
E.g.f. with offset 0: exp(1-(1-3*x)^(1/3))/(1-3*x)^(2/3). - Sergei N. Gladkovskii, Jul 07 2012.
a(n) ~ sqrt(2*Pi)*3^(n-1)*exp(1-n)*n^(n-5/6)/Gamma(2/3) * (1-sqrt(3)*Gamma(2/3)^2/(2*Pi*n^(1/3))). - Vaclav Kotesovec, Aug 10 2013
From Seiichi Manyama, Jan 20 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 3^(n-k) * |Stirling1(n,k)| * A000587(k).
a(n) = e * (-3)^n * n! * Sum_{k>=0} (-1)^k * binomial(k/3,n)/k!. (End)