A016098 Number of crossing set partitions of {1,2,...,n}.
0, 0, 0, 0, 1, 10, 71, 448, 2710, 16285, 99179, 619784, 4005585, 26901537, 188224882, 1373263700, 10444784477, 82735225014, 681599167459, 5830974941867, 51717594114952, 474845349889731, 4506624255883683, 44151662795470696, 445957579390657965
Offset: 0
Keywords
Examples
13|24 is the only crossing partition of {1,2,3,4}. G.f. = x^4 + 10*x^5 + 71*x^6 + 448*x^7 + 2710*x^8 + 16285*x^9 + ... From _Gus Wiseman_, Feb 15 2019: (Start) The a(5) = 10 crossing set partitions: {{1,2,4},{3,5}} {{1,3},{2,4,5}} {{1,3,4},{2,5}} {{1,3,5},{2,4}} {{1,4},{2,3,5}} {{1},{2,4},{3,5}} {{1,3},{2,4},{5}} {{1,3},{2,5},{4}} {{1,4},{2},{3,5}} {{1,4},{2,5},{3}} (End)
References
- JoAnne (Simpson) Growney, Structure Inherent in a Free Groupoid, PhD Dissertation, The University of Oklahoma, 1970.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- H. W. Becker, Planar rhyme schemes, in The October meeting in Washington, Bull. Amer. Math. Soc. 58 (1952) p. 39.
- Martin Gardner, Mathematical Games, Scientific American (May 1978), pp. 24-32.
- G. Kreweras, Sur les partitions non croisées d'un cycle, (French) Discrete Math. 1 (1972), no. 4, 333-350. MR0309747 (46 #8852).
- Wikipedia, Noncrossing partition
Crossrefs
Programs
-
Magma
[Bell(n)-Catalan(n): n in [0..25]]; // Vincenzo Librandi, Aug 31 2016
-
Maple
A016098 := n -> combinat[bell](n) - binomial(2*n,n)/(n+1): seq(A016098(n),n=0..22); # Peter Luschny, Apr 28 2011
-
Mathematica
Table[Sum[StirlingS2[n, k], {k, 0, n}] - Binomial[2*n, n]/(n + 1), {n, 0, 25}] (* T. D. Noe, May 29 2012 *) Table[BellB[n] - CatalanNumber[n], {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2016 *) sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
Gus Wiseman, Feb 17 2019 *) -
MuPAD
combinat::bell(n)-combinat::catalan(n) $ n = 0..26 // Zerinvary Lajos, May 10 2008
-
Sage
[bell_number(i)-catalan_number(i) for i in range(23)] # Zerinvary Lajos, Mar 14 2009
Formula
a(n) = Sum_{k=0..n} S2(n,k) - binomial(2*n,n)/(n+1); S2(n,k) Stirling numbers of the second kind.
E.g.f.: exp(exp(x)-1) - (BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x). - Ilya Gutkovskiy, Aug 31 2016
Extensions
Offset corrected by Matthew Vandermast, Nov 22 2010
New name from Peter Luschny, Apr 28 2011
Comments