A016123 a(n) = (11^(n+1) - 1)/10.
1, 12, 133, 1464, 16105, 177156, 1948717, 21435888, 235794769, 2593742460, 28531167061, 313842837672, 3452271214393, 37974983358324, 417724816941565, 4594972986357216, 50544702849929377, 555991731349223148
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..950
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Eric Weisstein's World of Mathematics, Repunit
- Index entries for linear recurrences with constant coefficients, signature (12,-11).
Crossrefs
Programs
-
Magma
[(11^(n+1)-1)/10: n in [0..30]]; // G. C. Greubel, Feb 21 2024
-
Mathematica
(11^Range[0,20]-1)/10 (* or *) LinearRecurrence[{12,-11},{0,1},20] (* Harvey P. Dale, Apr 05 2012 *)
-
Maxima
A016123(n):=(11^(n+1)-1)/10$ makelist(A016123(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=(11^(n+1)-1)/10 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[lucas_number1(n,12,11) for n in range(1, 19)] # Zerinvary Lajos, Apr 27 2009
-
Sage
[gaussian_binomial(n,1,11) for n in range(1,19)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = Sum_{k=0..n} 11^k = (11^(n+1) - 1)/10.
G.f.: (1/(1-11*x) - 1/(1-x))/(10*x) = 1/((1-11*x)*(1-x)).
a(0)=1, a(n) = 11*a(n-1) + 1. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=1, a(n) = 12*a(n-1) - 11*a(n-2). - Harvey P. Dale, Apr 05 2012
E.g.f.: exp(x)*(11*exp(10*x) - 1)/10. - Stefano Spezia, Mar 11 2023
Extensions
Title edited by Daniel Forgues, Jul 08 2011
Comments