cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016161 Expansion of g.f. 1/((1-5*x)*(1-7*x)).

Original entry on oeis.org

1, 12, 109, 888, 6841, 51012, 372709, 2687088, 19200241, 136354812, 964249309, 6798573288, 47834153641, 336059778612, 2358521965909, 16540171339488, 115933787267041, 812299450322412, 5689910849522509
Offset: 0

Views

Author

Keywords

Comments

Also, this is the number of incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes each of shape 4k + 1. Cf. A003462, A109021. - R. K. Guy, Jan 31 2007

Crossrefs

Programs

  • Magma
    [n le 2 select 12^(n-1) else 12*Self(n-1) -35*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 09 2024
    
  • Mathematica
    CoefficientList[Series[1/((1-5x)(1-7x)),{x,0,30}],x] (* or *) LinearRecurrence[ {12,-35},{1,12},30] (* Harvey P. Dale, Nov 16 2021 *)
  • PARI
    Vec(1/((1-5*x)*(1-7*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    
  • SageMath
    A016161=BinaryRecurrenceSequence(12,-35,1,12)
    [A016161(n) for n in range(31)] # G. C. Greubel, Nov 09 2024

Formula

From R. J. Mathar, Sep 18 2008: (Start)
a(n) = (7^(n+1) - 5^(n+1))/2 = A081200(n+1).
Binomial transform of A080962. (End)
a(n) = 7*a(n-1) + 5^n. - Vincenzo Librandi, Feb 09 2011
E.g.f.: exp(5*x)*(7*exp(2*x) - 5)/2. - Stefano Spezia, Oct 25 2023

A191466 a(n) = 9^n - 5^n.

Original entry on oeis.org

0, 4, 56, 604, 5936, 55924, 515816, 4704844, 42656096, 385467364, 3477018776, 31332231484, 282185395856, 2540645125204, 22870688939336, 205860614516524, 1852867600961216, 16676418760213444, 150090820599733496, 1350832644186663964, 12157570091625288176, 109418512294354156084
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n-5^n: n in [0..20]];
    
  • Mathematica
    Table[9^n - 5^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x/((1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
    LinearRecurrence[{14,-45},{0,4},20] (* Harvey P. Dale, Jun 26 2019 *)
  • PARI
    a(n)=9^n-5^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 14*a(n-1) - 45*a(n-2).
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 4*x/((1-5*x)*(1-9*x)).
a(n+1) = 4*A016163(n). (End)
E.g.f.: 2*exp(14*x/2)*sinh(2*x). - Elmo R. Oliveira, Mar 31 2025

A017897 Expansion of 1/((1-3*x)*(1-5*x)*(1-9*x)).

Original entry on oeis.org

1, 17, 202, 2090, 20251, 189707, 1745332, 15900020, 144066901, 1301455397, 11737424062, 105758621150, 952437144751, 8574983669087, 77190104636392, 694787214149480, 6253466332501801, 56283104147438777, 506557473488982322, 4559064943373269010
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-3*x)*(1-5*x)*(1-9*x)))); // Vincenzo Librandi, Jul 01 2013
    
  • Magma
    I:=[1, 17, 202]; [n le 3 select I[n] else 17*Self(n-1)-87*Self(n-2)+135*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 01 2013
    
  • Maple
    a:= n -> (Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [17, -87, 135][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..25); # Alois P. Heinz, Aug 04 2008
  • Mathematica
    CoefficientList[Series[1 / ((1 - 3 x) (1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 01 2013 *)
    LinearRecurrence[{17,-87,135},{1,17,202},30] (* Harvey P. Dale, Sep 26 2014 *)
    a[n_]:=(9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24; Array[a, 30, 0] (* Stefano Spezia, Oct 04 2018 *)
  • PARI
    a(n) = (9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24; \\ Joerg Arndt, Aug 13 2013
    
  • SageMath
    def A017897(n): return (9^(n+2) -3*5^(n+2) +2*3^(n+2))//24
    [A017897(n) for n in range(41)] # G. C. Greubel, Nov 09 2024

Formula

a(n) = term (1,1) in the 3 X 3 matrix [17,1,0; -87,0,1; 135,0,0]^n. - Alois P. Heinz, Aug 04 2008
From Vincenzo Librandi, Jul 01 2013: (Start)
a(n) = 17*a(n-1) - 87*a(n-2) + 135*a(n-3); a(0)=1, a(1)=17, a(2)=202.
a(n) = 14*a(n-1) - 45*a(n-2) + 3^n. (End)
a(n) = (9^(n+2) - 3*5^(n+2) + 2*3^(n+2))/24. - Yahia Kahloune, Aug 13 2013
E.g.f.: exp(3*x)*(6 - 25*exp(2*x) + 27*exp(6*x))/8. - Stefano Spezia, Nov 09 2024
Showing 1-3 of 3 results.