cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A020579 Expansion of g.f. 1/((1-6*x)*(1-8*x)*(1-9*x)).

Original entry on oeis.org

1, 23, 355, 4595, 53851, 592403, 6240235, 63710915, 635468251, 6225852083, 60146237515, 574587484835, 5439634923451, 51116555484563, 477406092913195, 4435981769620355, 41041272503703451, 378327871809737843, 3476703760455563275, 31864966517183461475, 291385416197758352251
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-6*x)*(1-8*x)*(1-9*x)))); // Vincenzo Librandi, Jul 04 2013
    
  • Magma
    I:=[1,23,355]; [n le 3 select I[n] else 23*Self(n-1)-174*Self(n-2)+432*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 04 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 6 x) (1 - 8 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 04 2013 *)

Formula

a(n) = 6*6^n - 32*8^n + 27*9^n. - R. J. Mathar, Jun 30 2013
From Vincenzo Librandi, Jul 04 2013: (Start)
a(0)=1, a(1)=23, a(2)=355; for n>2, a(n) = 23*a(n-1) - 174*a(n-2) + 432*a(n-3).
a(n) = 17*a(n-1) - 72*a(n-2) + 6^n. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(6*x)*(6 - 32*exp(2*x) + 27*exp(3*x)).
a(n) = A016172(n+1) - A016170(n+1). (End)

A020595 Expansion of g.f. 1/((1-6*x)*(1-9*x)*(1-10*x)).

Original entry on oeis.org

1, 25, 421, 5965, 76741, 929005, 10791061, 121699645, 1342777381, 14569879885, 156038219701, 1653799781725, 17380932862021, 181408804717165, 1882561696208341, 19442349988398205, 199976918230722661, 2049766874087336845, 20947749526851028981, 213528831702049245085
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-6*x)*(1-9*x)*(1-10*x)))); // Vincenzo Librandi, Jul 04 2013
    
  • Magma
    I:=[1, 25, 421]; [n le 3 select I[n] else 25*Self(n-1)-204*Self(n-2)+540*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 04 2013
  • Mathematica
    CoefficientList[Series[1 / ((1 - 6 x) (1 - 9 x) (1 - 10 x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{25, -204, 540}, {1, 25, 421}, 20] (* Harvey P. Dale, Oct 13 2012 *)

Formula

a(0)=1, a(1)=25, a(2)=421; For n>2, a(n) = 25*a(n-1) - 204*a(n-2) + 540*a(n-3). - Harvey P. Dale, Oct 13 2012
a(n) = (3*10^(n+2) - 4*9^(n+2) + 6^(n+2))/12. - Yahia Kahloune, Jun 30 2013
a(n) = 19*a(n-1) - 90*a(n-2) + 6^n. - Vincenzo Librandi, Jul 04 2013
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(6*x)*(300*exp(4*x) - 324*exp(3*x) + 36)/12.
a(n) = A016173(n+1) - A016172(n+1). (End)

A102752 Array read by antidiagonals: T(n, k) = ((n+2)^k-(n-1)^k)/3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 5, 9, 5, 0, 1, 7, 21, 27, 11, 0, 1, 9, 39, 85, 81, 21, 0, 1, 11, 63, 203, 341, 243, 43, 0, 1, 13, 93, 405, 1031, 1365, 729, 85, 0, 1, 15, 129, 715, 2511, 5187, 5461, 2187, 171, 0, 1, 17, 171, 1157, 5261, 15309, 25999, 21845, 6561, 341, 0, 1
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 09 2005

Keywords

Comments

Consider a 3 X 3 matrix M =
[n, 1, 1]
[1, n, 1]
[1, 1, n].
The n-th row of the array contains the values of the nondiagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = nondiagonal entry + (n-1)^k.)
Table:
n: row sequence G.f. cross references.
0: (2^n-(-1)^n)/3 1/((1+1x)(1-2x)) A001045 (Jacobsthal sequence)
1: (3^n-0^n)/3 1/(1-3x) A000244
2: (4^n-1^n)/3 1/((1-1x)(1-4x)) A002450
3: (5^n-2^n)/3 1/((1-2x)(1-5x)) A016127
4: (6^n-3^n)/3 1/((1-3x)(1-6x)) A016137
5: (7^n-4^n)/3 1/((1-4x)(1-7x)) A016150
6: (8^n-5^n)/3 1/((1-5x)(1-8x)) A016162
7: (9^n-6^n)/3 1/((1-6x)(1-9x)) A016172
8: (10^n-7^n)/3 1/((1-7x)(1-10x)) A016181
9: (11^n-8^n)/3 1/((1-8x)(1-11x)) A016187
10:(12^n-9^n)/3 1/((1-9x)(1-12x)) A016191
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+2.
Columns follow polynomials with certain binomial coefficients:
column: polynomial
0: 0
1: 1
2: 2*n + 1
3: 3*n^2+ 3*n + 3
4: 4*n^3+ 6*n^2+ 12*n + 5
5: 5*n^4+10*n^3+ 30*n^2+ 25*n + 11
6: 6*n^5+15*n^4+ 60*n^3+ 75*n^2+ 66*n + 21
7: 7*n^6+21*n^5+105*n^4+ 175*n^3+ 231*n^2+ 147*n + 43
8: 8*n^7+28*n^6+168*n^5+ 350*n^4+ 616*n^3+ 588*n^2+344*n+ 85
etc.
Coefficients are generated by the array T(n,k)=(2^(n-k-1)-(-1)^(n-k-1))/3*(binomial(k+(n-k-1),n-k-1)) read by antidiagonals.

Examples

			Array begins:
  0, 1, 1,  3,   5,   11, ...
  0, 1, 3,  9,  27,   81, ...
  0, 1, 5, 21,  85,  341, ...
  0, 1, 7, 39, 203, 1031, ...
  0, 1, 9, 63, 405, 2511, ...
  ...
		

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M for(k=0,10, for(i=0,10,print1((MM(3,k)^i)[1,2],","));print())
Showing 1-4 of 4 results.