A016187 Expansion of 1/((1-8*x)*(1-11*x)).
1, 19, 273, 3515, 42761, 503139, 5796673, 65860555, 741243321, 8287894259, 92240578673, 1023236299995, 11324318776681, 125117262357379, 1380687932442273, 15222751628953835, 167731742895202841, 1847300971660916499, 20338325086779563473, 223865691142651054075, 2463675524073768441801, 27109654136848307635619
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (19,-88).
Crossrefs
Cf. A016140.
Programs
-
Magma
[(11^(n+1)-8^(n+1))/3: n in [0..40]]; // G. C. Greubel, Nov 14 2024
-
Mathematica
Table[(11^(n+1)-8^(n+1))/3, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *) LinearRecurrence[{19,-88}, {1,19}, 40] (* G. C. Greubel, Nov 14 2024 *)
-
PARI
for(n=1,10,print1((11^n-8^n)/3,","))
-
PARI
MM(n, N) = local(M); M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M for(i=1,10,print1((MM(3,9)^i)[1,2],","))
-
SageMath
A016187=BinaryRecurrenceSequence(19,-88,1,19) print([A016187(n) for n in range(41)]) # G. C. Greubel, Nov 14 2024
Formula
a(n) = (11^(n+1) - 8^(n+1))/3. - Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005
a(n) = 11*a(n-1) + 8^n, a(0)=1. - Vincenzo Librandi, Feb 09 2011
a(n) = 19*a(n-1) - 88*a(n-2), a(0)=1, a(1)=19. - Vincenzo Librandi, Feb 09 2011
E.g.f.: (1/3)*(11*exp(11*x) - 8*exp(8*x)). - G. C. Greubel, Nov 14 2024
Extensions
More terms added by G. C. Greubel, Nov 14 2024