cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016140 Expansion of 1/((1-3*x)*(1-8*x)).

Original entry on oeis.org

1, 11, 97, 803, 6505, 52283, 418993, 3354131, 26839609, 214736555, 1717951489, 13743789059, 109950843913, 879608345627, 7036871547985, 56294986732787, 450359936909017, 3602879624412299, 28823037382718881, 230584300224012515, 1844674405278884521, 14757395252691429371, 118059162052912494577, 944473296517443135443
Offset: 0

Views

Author

Keywords

Comments

In general, for expansion of 1/((1-b*x)*(1-c*x)): a(n) = (c^(n+1) - b^(n+1))/(c-b) = (b+c)*a(n-1) - b*c*a(n-2) = b*a(n-1) + c^n = c*a(n-1) + b^n = Sum_{i=0..n} b^i*c^(n-i). - Henry Bottomley, Jul 20 2000
8*a(n) gives the number of edges in the n-th-order SierpiƄski carpet graph. - Eric W. Weisstein, Aug 19 2013

Crossrefs

Sequences with g.f. 1/((1-n*x)*(1-8*x)): A001018 (n=0), A023001 (n=1), A016131 (n=2), this sequence (n=3), A016152 (n=4), A016162 (n=5), A016170 (n=6), A016177 (n=7), A053539 (n=8), A016185 (n=9), A016186 (n=10), A016187 (n=11), A016188 (n=12), A060195 (n=16).
Cf. A190543.

Programs

Formula

a(n) = (8^(n+1) - 3^(n+1))/5.
a(n) = 11*a(n-1) - 24*a(n-2).
a(n) = 3*a(n-1) + 8^n.
a(n) = 8*a(n-1) + 3^n.
a(n) = Sum_{i=0..n} 3^i*8^(n-i).
E.g.f.: (1/5)*(8*exp(8*x) - 3*exp(3*x)). - G. C. Greubel, Nov 14 2024

A139746 a(n) = 11^n - 8^n.

Original entry on oeis.org

0, 3, 57, 819, 10545, 128283, 1509417, 17390019, 197581665, 2223729963, 24863682777, 276721736019, 3069708899985, 33972956330043, 375351787072137, 4142063797326819, 45668254886861505, 503195228685608523, 5541902914982749497, 61014975260338690419, 671597073427953162225
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. A016187.

Programs

  • Magma
    [11^n-8^n: n in [0..30]]; // Vincenzo Librandi, Jun 02 2011
  • Mathematica
    Table[11^n-8^n,{n,0,30}] (* or *) LinearRecurrence[{19,-88},{0,3},30] (* Harvey P. Dale, Apr 13 2019 *)

Formula

a(n) = 19*a(n-1) - 88*a(n-2). - Vincenzo Librandi, Jun 02 2011
From Elmo R. Oliveira, Apr 01 2025: (Start)
G.f.: 3*x/((1-8*x)*(1-11*x)).
E.g.f.: 2*exp(19*x/2)*sinh(3*x/2).
a(n) = 3*A016187(n-1) for n >= 1. (End)

A102752 Array read by antidiagonals: T(n, k) = ((n+2)^k-(n-1)^k)/3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 5, 9, 5, 0, 1, 7, 21, 27, 11, 0, 1, 9, 39, 85, 81, 21, 0, 1, 11, 63, 203, 341, 243, 43, 0, 1, 13, 93, 405, 1031, 1365, 729, 85, 0, 1, 15, 129, 715, 2511, 5187, 5461, 2187, 171, 0, 1, 17, 171, 1157, 5261, 15309, 25999, 21845, 6561, 341, 0, 1
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 09 2005

Keywords

Comments

Consider a 3 X 3 matrix M =
[n, 1, 1]
[1, n, 1]
[1, 1, n].
The n-th row of the array contains the values of the nondiagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = nondiagonal entry + (n-1)^k.)
Table:
n: row sequence G.f. cross references.
0: (2^n-(-1)^n)/3 1/((1+1x)(1-2x)) A001045 (Jacobsthal sequence)
1: (3^n-0^n)/3 1/(1-3x) A000244
2: (4^n-1^n)/3 1/((1-1x)(1-4x)) A002450
3: (5^n-2^n)/3 1/((1-2x)(1-5x)) A016127
4: (6^n-3^n)/3 1/((1-3x)(1-6x)) A016137
5: (7^n-4^n)/3 1/((1-4x)(1-7x)) A016150
6: (8^n-5^n)/3 1/((1-5x)(1-8x)) A016162
7: (9^n-6^n)/3 1/((1-6x)(1-9x)) A016172
8: (10^n-7^n)/3 1/((1-7x)(1-10x)) A016181
9: (11^n-8^n)/3 1/((1-8x)(1-11x)) A016187
10:(12^n-9^n)/3 1/((1-9x)(1-12x)) A016191
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+2.
Columns follow polynomials with certain binomial coefficients:
column: polynomial
0: 0
1: 1
2: 2*n + 1
3: 3*n^2+ 3*n + 3
4: 4*n^3+ 6*n^2+ 12*n + 5
5: 5*n^4+10*n^3+ 30*n^2+ 25*n + 11
6: 6*n^5+15*n^4+ 60*n^3+ 75*n^2+ 66*n + 21
7: 7*n^6+21*n^5+105*n^4+ 175*n^3+ 231*n^2+ 147*n + 43
8: 8*n^7+28*n^6+168*n^5+ 350*n^4+ 616*n^3+ 588*n^2+344*n+ 85
etc.
Coefficients are generated by the array T(n,k)=(2^(n-k-1)-(-1)^(n-k-1))/3*(binomial(k+(n-k-1),n-k-1)) read by antidiagonals.

Examples

			Array begins:
  0, 1, 1,  3,   5,   11, ...
  0, 1, 3,  9,  27,   81, ...
  0, 1, 5, 21,  85,  341, ...
  0, 1, 7, 39, 203, 1031, ...
  0, 1, 9, 63, 405, 2511, ...
  ...
		

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M for(k=0,10, for(i=0,10,print1((MM(3,k)^i)[1,2],","));print())
Showing 1-3 of 3 results.