A016189 a(n) = 10^n - 9^n.
0, 1, 19, 271, 3439, 40951, 468559, 5217031, 56953279, 612579511, 6513215599, 68618940391, 717570463519, 7458134171671, 77123207545039, 794108867905351, 8146979811148159, 83322818300333431, 849905364703000879, 8649148282327007911, 87842334540943071199, 890581010868487640791
Offset: 0
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 143
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..130
- Alexander Bogomolny, Almost every integer has a digit 3 in it
- John Elias, Illustration of Initial Terms
- James Grime, 3 is everywhere, Numberphile video
- Index entries for linear recurrences with constant coefficients, signature (19, -90).
Crossrefs
Programs
-
Haskell
a016189 n = 10 ^ n - 9 ^ n a016189_list = 0 : zipWith (+) (map (* 9) a016189_list) a011557_list -- Reinhard Zumkeller, Apr 03 2015
-
Magma
[10^n - 9^n: n in [0..20]]; // Vincenzo Librandi, Apr 26 2011
-
Mathematica
f[n_]:=10^n-9^n;f[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
-
PARI
a(n)=10^n-9^n \\ M. F. Hasler, May 04 2015
Formula
G.f.: x/((1-9x)(1-10x)).
a(0) = 0, a(1) = 1, then a(n+1) = 9*a(n) + 10^n.
a(n) = 19*a(n-1) - 90*a(n-2), n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: e^(10*x) - e^(9*x). - Mohammad K. Azarian, Jan 14 2009
Comments