cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016451 Continued fraction for log(23).

Original entry on oeis.org

3, 7, 2, 1, 1, 1, 2, 3, 1, 1, 1, 4, 158, 3, 2, 5, 1, 6, 4, 2, 72, 1, 2, 1, 5, 14, 3, 1, 5, 2, 2, 1, 4, 8, 1, 1, 1, 4, 18, 1, 1, 2, 1, 4, 2, 1, 1, 1, 2, 3, 3, 26, 1, 3, 1, 22, 3, 5, 1, 2, 2, 2, 1, 29, 2, 1, 2, 1, 8, 9, 2, 1, 2, 8, 19, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			3.135494215929149690806752831... = 3 + 1/(7 + 1/(2 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, May 17 2009
		

Crossrefs

Cf. A016646 Decimal expansion. - Harry J. Smith, May 17 2009

Programs

  • Mathematica
    ContinuedFraction[Log[23],120] (* Harvey P. Dale, Jun 23 2020 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(23)); for (n=1, 20000, write("b016451.txt", n, " ", x[n])); } \\ Harry J. Smith, May 17 2009

A016669 Decimal expansion of log(46).

Original entry on oeis.org

3, 8, 2, 8, 6, 4, 1, 3, 9, 6, 4, 8, 9, 0, 9, 5, 0, 0, 0, 2, 2, 3, 9, 8, 4, 9, 5, 3, 2, 6, 8, 3, 7, 2, 6, 8, 6, 5, 1, 7, 8, 8, 0, 4, 4, 9, 2, 0, 0, 6, 9, 0, 9, 9, 6, 1, 1, 9, 3, 1, 5, 3, 8, 6, 9, 7, 6, 3, 8, 6, 8, 6, 7, 9, 5, 4, 4, 9, 3, 0, 1, 3, 8, 0, 4, 2, 6, 4, 4, 1, 9, 1, 4, 9, 4, 1, 3, 5, 0
Offset: 1

Views

Author

Keywords

Examples

			3.828641396489095000223984953268372686517880449200690996119315386976386....
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016474 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[46], 10, 120][[1]] (* Vincenzo Librandi, Jun 21 2015 *)
  • PARI
    default(realprecision, 20080); x=log(46); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016669.txt", n, " ", d)); \\ Harry J. Smith, May 21 2009

Formula

Equals A002162+A016646. - R. J. Mathar, Jun 07 2024

A067923 Engel expansion of log(23).

Original entry on oeis.org

1, 1, 1, 8, 12, 135, 199, 378, 600, 1836, 4897, 8198, 8993, 84887, 450287, 892157, 5053447, 5183243, 15350505, 19963471, 31631271, 37655416, 2138752269, 4805947342, 14508700588, 27508373127, 28635924075, 30814114095, 32073629885, 961160400603, 3607716972786
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions. Log(23) is the first number of the form Log(n), n an integer, for which it is not known whether a BBP formula exists.
Cf. A016646.

Programs

  • PARI
    \\ a(1)=1 and for n>1:
    s=log(23); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );
Showing 1-3 of 3 results.