A016755 Odd cubes: a(n) = (2*n + 1)^3.
1, 27, 125, 343, 729, 1331, 2197, 3375, 4913, 6859, 9261, 12167, 15625, 19683, 24389, 29791, 35937, 42875, 50653, 59319, 68921, 79507, 91125, 103823, 117649, 132651, 148877, 166375, 185193, 205379, 226981, 250047, 274625, 300763, 328509, 357911, 389017, 421875
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Marc Chamberland and Armin Straub, On gamma quotients and infinite products, Advances in Applied Mathematics, Vol. 51, No. 5 (2013), pp. 546-562.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(2*n+1)^3: n in [0..50]]; // Vincenzo Librandi, Sep 05 2011
-
Mathematica
Range[1,101,2]^3 (* Harvey P. Dale, Nov 18 2013 *)
-
PARI
a(n)=(2*n+1)^3 \\ Charles R Greathouse IV, Jan 02 2012
-
Python
def a(n): return (2*n+1)**3 print([a(n) for n in range(38)]) # Michael S. Branicky, Jan 27 2021
Formula
Sum_{n >= 0} 1/a(n) = 7 * zeta(3) / 8.
G.f.: (1+23*x+23*x^2+x^3)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
E.g.f.: exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). See A154537, row n=3. - Wolfdieter Lang, Mar 12 2017
From Bruce J. Nicholson, Dec 08 2019: (Start)
Sum_{n>=0} (-1)^n/a(n) = Pi^3/32 (A153071). - Amiram Eldar, Oct 10 2020
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/12)*(1 + sqrt(2)*cosh(sqrt(3)*Pi/4)) (Chamberland and Straub, 2013). - Amiram Eldar, Jan 26 2024
Comments