A016778 a(n) = (3*n+1)^2.
1, 16, 49, 100, 169, 256, 361, 484, 625, 784, 961, 1156, 1369, 1600, 1849, 2116, 2401, 2704, 3025, 3364, 3721, 4096, 4489, 4900, 5329, 5776, 6241, 6724, 7225, 7744, 8281, 8836, 9409, 10000, 10609, 11236, 11881, 12544, 13225, 13924, 14641, 15376, 16129, 16900, 17689
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
(3*Range[0,50]+1)^2 (* or *) LinearRecurrence[{3,-3,1},{1,16,49},50] (* Harvey P. Dale, Mar 03 2013 *)
-
Maxima
A016778(n):=(3*n+1)^2$ makelist(A016778(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=(3*n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = a(n-1) + 3*(6*n-1); a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=16, a(2)=49. - Harvey P. Dale, Mar 03 2013
a(n) = A247792(n) + 6*n. - Miquel Cerda, Oct 23 2016
G.f.: (1 + 13*x + 4*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Oct 23 2016
From Amiram Eldar, Nov 12 2020: (Start)
Sum_{n>=0} 1/a(n) = A214550.
Sum_{n>=0} (-1)^n/a(n) = A262178. (End)
From Elmo R. Oliveira, May 29 2025: (Start)
E.g.f.: exp(x)*(1 + 15*x + 9*x^2).
Comments