cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016779 a(n) = (3*n + 1)^3.

Original entry on oeis.org

1, 64, 343, 1000, 2197, 4096, 6859, 10648, 15625, 21952, 29791, 39304, 50653, 64000, 79507, 97336, 117649, 140608, 166375, 195112, 226981, 262144, 300763, 343000, 389017, 438976, 493039, 551368, 614125, 681472, 753571, 830584, 912673, 1000000, 1092727, 1191016
Offset: 0

Views

Author

Keywords

Comments

The inverse binomial transform is 1, 63, 216, 162, 0, 0, 0 (0 continued). R. J. Mathar, May 07 2008
Perfect cubes with digital root 1 in base 10. Proof: perfect cubes are one of (3*s)^3, (3*s+1)^3 or (3*s+2)^3. Digital roots of (3*s)^3 are 0, digital roots of (3*s+1)^3 are 1, and digital roots of (3*s+2)^3 are 8, using trinomial expansion and the multiplicative property of digits roots. - R. J. Mathar, Jul 31 2010

Examples

			a(2) = (3*2+1)^3 = 343.
a(6) = (3*6+1)^3 = 6859.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
  • Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)

Crossrefs

Programs

Formula

Sum_{n>=0} 1/a(n) = 2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27.
O.g.f.: (1 + 60*x + 93*x^2 + 8*x^3)/(1 - x)^4. - R. J. Mathar, May 07 2008
E.g.f.: (1 + 63*x + 108*x^2 + 27*x^3)*exp(x). - Ilya Gutkovskiy, Jun 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
Sum_{n>=1} (-1)^n/a(n) = A226735. - R. J. Mathar, Feb 07 2024