A016779 a(n) = (3*n + 1)^3.
1, 64, 343, 1000, 2197, 4096, 6859, 10648, 15625, 21952, 29791, 39304, 50653, 64000, 79507, 97336, 117649, 140608, 166375, 195112, 226981, 262144, 300763, 343000, 389017, 438976, 493039, 551368, 614125, 681472, 753571, 830584, 912673, 1000000, 1092727, 1191016
Offset: 0
Examples
a(2) = (3*2+1)^3 = 343. a(6) = (3*6+1)^3 = 6859.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.
- Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(3*n+1)^3: n in [0..30]]; // Vincenzo Librandi, May 09 2011
-
Mathematica
Table[(3n+1)^3,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *) LinearRecurrence[{4,-6,4,-1},{1,64,343,1000},40] (* Harvey P. Dale, Oct 31 2016 *)
-
PARI
a(n)=(3*n+1)^3 \\ Charles R Greathouse IV, Jan 02 2012
Formula
Sum_{n>=0} 1/a(n) = 2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27.
O.g.f.: (1 + 60*x + 93*x^2 + 8*x^3)/(1 - x)^4. - R. J. Mathar, May 07 2008
E.g.f.: (1 + 63*x + 108*x^2 + 27*x^3)*exp(x). - Ilya Gutkovskiy, Jun 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 02 2020
Sum_{n>=1} (-1)^n/a(n) = A226735. - R. J. Mathar, Feb 07 2024
Comments