cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016788 a(n) = (3*n+1)^12.

Original entry on oeis.org

1, 16777216, 13841287201, 1000000000000, 23298085122481, 281474976710656, 2213314919066161, 12855002631049216, 59604644775390625, 232218265089212416, 787662783788549761, 2386420683693101056, 6582952005840035281, 16777216000000000000, 39959630797262576401
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A008456(A016777(n)). - Michel Marcus, Jun 16 2016
Sum_{n>=0} 1/a(n) = PolyGamma(11, 1/3)/21213424108800. - Amiram Eldar, Mar 30 2022

A016943 a(n) = (6*n + 2)^11.

Original entry on oeis.org

2048, 8589934592, 4049565169664, 204800000000000, 3670344486987776, 36028797018963968, 238572050223552512, 1196683881290399744, 4882812500000000000, 16985107389382393856, 52036560683837093888, 143746751770690322432, 364375289404334925824, 858993459200000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A016787(n)*2^11. - Zerinvary Lajos, Jun 22 2009
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016933(n)^9 = A016935(n)^3.
Sum_{n>=0} 1/a(n) = 1847*Pi^11/(1285662067200*sqrt(3)) + 88573*zeta(11)/362797056. (End)

A017207 a(n) = (9*n + 3)^11.

Original entry on oeis.org

177147, 743008370688, 350277500542221, 17714700000000000, 317475837322472439, 3116402981210161152, 20635899893042801193, 103510234140112521216, 422351360321044921875, 1469170321634239709184, 4501035456767426597157, 12433743083946522728448, 31517572945366073781711
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(9*n+3)^11: n in [0..15]]; // Vincenzo Librandi, Jul 23 2011
  • Mathematica
    Table[(9*n + 3)^11, {n, 0, 15}] (* Amiram Eldar, Oct 03 2024 *)

Formula

From Amiram Eldar, Oct 03 2024: (Start)
a(n) = A017197(n)^11 = 3^11 * A016787(n).
Sum_{n>=0} 1/a(n) = 7388*Pi^11/(444826519957575*sqrt(3)) + 88573*zeta(11)/31381059609. (End)

A017579 a(n) = (12n+4)^11.

Original entry on oeis.org

4194304, 17592186044416, 8293509467471872, 419430400000000000, 7516865509350965248, 73786976294838206464, 488595558857835544576, 2450808588882738675712, 10000000000000000000000, 34785499933455142617088, 106570876280498368282624, 294393347626373780340736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Jul 14 2024: (Start)
a(n) = A008455(A017569(n)) = A017569(n)^11.
a(n) = 4194304 * A016787(n).
Sum_{n>=0} 1/a(n) = 1847*Pi^11/(2633035913625600*sqrt(3)) + 88573*zeta(11)/743008370688. (End)

Extensions

More terms from Amiram Eldar, Jul 14 2024
Showing 1-4 of 4 results.