cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016814 a(n) = (4*n + 1)^2.

Original entry on oeis.org

1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016754. Sequence arises from reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), this sequence (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).

Programs

Formula

a(n) = a(n-1) + 32*n - 8, n > 0. - Vincenzo Librandi, Dec 15 2010
From George F. Johnson, Sep 28 2012: (Start)
G.f.: (1 + 22*x + 9*x^2)/(1 - x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n) - 16)^2 ; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n) = (A016813(n))^2. (End)
Sum_{n>=0} 1/a(n) = G/2 + Pi^2/16, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=1} (1 - 1/a(n)) = 2*Gamma(5/4)^2/sqrt(Pi) = 2 * A068467^2 * A087197. - Amiram Eldar, Feb 01 2021
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A017078(n).
a(2*n+1) = A017126(n).
E.g.f.: (1 + 24*x + 16*x^2)*exp(x). (End)
a(n) = A272399(n+1) - A014105(n). - Leo Tavares, Dec 24 2023